Special function/Catalogs/Catalog: Difference between revisions
< Special function | Catalogs
Jump to navigation
Jump to search
imported>Charles Blackham (expansion of circular, hyperbolic & inv hyperbolic trig f'ns) |
imported>Fredrik Johansson (consistency; fix some tex markup) |
||
Line 75: | Line 75: | ||
!Exponential formula | !Exponential formula | ||
|- | |- | ||
|[[Hyperbolic | |[[Hyperbolic sine]] | ||
|<math>\sinh(x)</math> | |<math>\sinh(x)</math> | ||
|<math>(e^{x}-e^{-x})/2</math> | |<math>(e^{x}-e^{-x})/2</math> | ||
|- | |- | ||
|[[Hyperbolic | |[[Hyperbolic cosine]] | ||
|<math>\cosh(x)</math> | |<math>\cosh(x)</math> | ||
|<math>(e^{x}+e^{-x})/2</math> | |<math>(e^{x}+e^{-x})/2</math> | ||
|- | |- | ||
|[[Hyperbolic | |[[Hyperbolic tangent]] | ||
|<math>\tanh(x)</math> | |<math>\tanh(x)</math> | ||
|<math>(e^{x}-e^{-x})/(e^{x}+e^{-x})</math> | |<math>(e^{x}-e^{-x})/(e^{x}+e^{-x})</math> | ||
|- | |- | ||
|[[Hyperbolic | |[[Hyperbolic cosecant]] | ||
|<math>\operatorname{csch}(x)</math> | |<math>\operatorname{csch}(x)</math> | ||
|<math>2/(e^{x}-e^{-x})</math> | |<math>2/(e^{x}-e^{-x})</math> | ||
|- | |- | ||
|[[Hyperbolic | |[[Hyperbolic secant]] | ||
|<math>\operatorname{sech}(x)</math> | |<math>\operatorname{sech}(x)</math> | ||
|<math>2/(e^{x}+e^{-x})</math> | |<math>2/(e^{x}+e^{-x})</math> | ||
|- | |- | ||
|[[Hyperbolic | |[[Hyperbolic cotangent]] | ||
|<math>\coth(x)</math> | |<math>\coth(x)</math> | ||
|<math>(e^{x}+e^{-x})/(e^{x}-e^{-x})</math> | |<math>(e^{x}+e^{-x})/(e^{x}-e^{-x})</math> | ||
Line 108: | Line 108: | ||
!Logarithmic formula | !Logarithmic formula | ||
|- | |- | ||
|[[Inverse | |[[Inverse hyperbolic sine]] | ||
|<math>\operatorname{arcsinh}(x)</math> | |<math>\operatorname{arcsinh}(x)</math> | ||
|<math>\ln{x+\sqrt{x^2+1}}</math> | |<math>\ln{x+\sqrt{x^2+1}}</math> | ||
|- | |- | ||
|[[Inverse | |[[Inverse hyperbolic cosine]] | ||
|<math>\operatorname{arccosh}(x)</math> | |<math>\operatorname{arccosh}(x)</math> | ||
|<math>\ln{x+\sqrt{x^2-1}}</math> | |<math>\ln{x+\sqrt{x^2-1}}</math> | ||
|- | |- | ||
|[[Inverse | |[[Inverse hyperbolic tangent]] | ||
|<math>\operatorname{arctanh}(x)</math> | |<math>\operatorname{arctanh}(x)</math> | ||
|<math>\frac{1}{2}ln{\frac{1+x}{1-x}}</math> | |<math>\frac{1}{2}\ln{\frac{1+x}{1-x}}</math> | ||
|- | |- | ||
|[[Inverse | |[[Inverse hyperbolic cosecant]] | ||
|<math>\operatorname{arccsch}(x)</math> | |<math>\operatorname{arccsch}(x)</math> | ||
| | | | ||
|- | |- | ||
|[[Inverse | |[[Inverse hyperbolic secant]] | ||
|<math>\operatorname{arcsech}(x)</math> | |<math>\operatorname{arcsech}(x)</math> | ||
| | | | ||
|- | |- | ||
|[[Inverse | |[[Inverse hyperbolic cotangent]] | ||
|<math>\operatorname{arccoth}(x)</math> | |<math>\operatorname{arccoth}(x)</math> | ||
| | | | ||
|} | |} | ||
===Other=== | ===Other=== | ||
Line 251: | Line 250: | ||
|<math>\psi(x), \psi^{(0)}(x)</math> | |<math>\psi(x), \psi^{(0)}(x)</math> | ||
|<math>H_{x-1}-\gamma</math> | |<math>H_{x-1}-\gamma</math> | ||
|<math>\begin{matrix}\frac{d}{dx}\end{matrix} \ | |<math>\begin{matrix}\frac{d}{dx}\end{matrix} \ln \Gamma(x)</math> | ||
|- | |- | ||
|[[Polygamma function]]<br/>(of order ''m'') | |[[Polygamma function]]<br/>(of order ''m'') | ||
|<math>\psi^{(m)}(x)</math> | |<math>\psi^{(m)}(x)</math> | ||
| | | | ||
|<math>\left(\begin{matrix}\frac{d}{dx}\end{matrix}\right)^{m+1} \ | |<math>\left(\begin{matrix}\frac{d}{dx}\end{matrix}\right)^{m+1} \ln \Gamma(x)</math> | ||
|} | |} | ||
Revision as of 14:54, 25 April 2007
Special functions are mathematical functions that turn up so often that they have been named. This page lists the most common special functions by category, along with some of the properties that are important to functions belonging to each category. It must be stressed that there is no single way to categorize functions; any practical classification will contain overlapping categories.
Algebraic functions
Complex parts
Elementary transcendental functions
Name | Notation |
---|---|
Exponential function | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp(x)} , |
Natural logarithm | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log(x)} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln(x)} |
Trigonometric functions
Name | Notation | Triangle formula | Exponential formula |
---|---|---|---|
Sine | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(x)} | Opposite / Hypotenuse | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{ix}-e^{-ix})/2i} |
Cosine | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(x)} | Adjacent / Hypotenuse | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{ix}+e^{-ix})/2} |
Tangent | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tan(x)} | Opposite / Adjacent | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\mathit{i}(e^{\mathit{i}x}-e^{-\mathit{i}x})/(e^{\mathit{i}x}+e^{-\mathit{i}x})} |
Cosecant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \csc(x)} | Hypotenuse / Opposite | |
Secant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec(x)} | Hypotenuse / Adjacent | |
Cotangent | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cot(x)} | Adjacent / Opposite |
Hyperbolic functions
Name | Notation | Exponential formula |
---|---|---|
Hyperbolic sine | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sinh(x)} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{x}-e^{-x})/2} |
Hyperbolic cosine | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cosh(x)} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{x}+e^{-x})/2} |
Hyperbolic tangent | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tanh(x)} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{x}-e^{-x})/(e^{x}+e^{-x})} |
Hyperbolic cosecant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{csch}(x)} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2/(e^{x}-e^{-x})} |
Hyperbolic secant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{sech}(x)} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2/(e^{x}+e^{-x})} |
Hyperbolic cotangent | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \coth(x)} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{x}+e^{-x})/(e^{x}-e^{-x})} |
Inverse trigonometric functions
Inverse hyperbolic functions
Name | Notation | Logarithmic formula |
---|---|---|
Inverse hyperbolic sine | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{arcsinh}(x)} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln{x+\sqrt{x^2+1}}} |
Inverse hyperbolic cosine | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{arccosh}(x)} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln{x+\sqrt{x^2-1}}} |
Inverse hyperbolic tangent | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{arctanh}(x)} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}\ln{\frac{1+x}{1-x}}} |
Inverse hyperbolic cosecant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{arccsch}(x)} | |
Inverse hyperbolic secant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{arcsech}(x)} | |
Inverse hyperbolic cotangent | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{arccoth}(x)} |
Other
Nonelementary integrals
Elliptic integrals
Orthogonal polynomials
See catalog of orthogonal polynomials for a more detailed listing.
Name | Notation | Interval | Weight function | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_0} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_2} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_3} , ... |
---|---|---|---|---|
Chebyshev (first kind) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1,1} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-x^2)^{-1/2}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2x^2 - 1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4x^3 - 3x} , ... |
Chebyshev (second kind) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle U_n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1,1} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-x^2)^{1/2}} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2x} , , , ... |
Legendre | ||||
Hermite | ||||
Laguerre | ||||
Associated Laguerre |
Name | Notation | Discrete formula | Continuous formula |
---|---|---|---|
Factorial | |||
Gamma function | |||
Double factorial |
|
||
Binomial coefficient | |||
Rising factorial | |||
Falling factorial | |||
Beta function | |||
Harmonic number | |||
Digamma function | |||
Polygamma function (of order m) |
- Incomplete gamma function
- Incomplete beta function
- Regularized gamma function
- Regularized beta function
- Barnes G-function
Notes:
- is Euler's constant
- The polygamma functions are generalized to continuous m by the Hurwitz zeta function
Hypergeometric functions
Note: many of the preceding functions are special cases of the following: