Special function/Catalogs/Catalog: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Aleksander Stos
(→‎References: +good intro)
imported>Chris Day
No edit summary
 
(10 intermediate revisions by 8 users not shown)
Line 1: Line 1:
{{subpages}}
[[Special function]]s are mathematical [[function (mathematics)|function]]s that turn up so often that they have been named. This page lists the most common special functions by category, along with some of the properties that are important to functions belonging to each category. It must be stressed that there is no single way to categorize functions; any practical classification will contain overlapping categories.
[[Special function]]s are mathematical [[function (mathematics)|function]]s that turn up so often that they have been named. This page lists the most common special functions by category, along with some of the properties that are important to functions belonging to each category. It must be stressed that there is no single way to categorize functions; any practical classification will contain overlapping categories.


Line 27: Line 28:
|<math>\exp(x)</math>, <math>e^x</math>
|<math>\exp(x)</math>, <math>e^x</math>
|-
|-
|[[Natural logarithm]]
|[[Logarithm|Natural logarithm]]
|<math>\log(x)</math>, <math>\ln(x)</math>
|<math>\log(x)</math>, <math>\ln(x)</math>
|}
|}


===Trigonometric functions===
[[Trigonometric function]]s:
{| class="wikitable"
{| class="wikitable" style="margin-top:0"
!Name
!Name
!Notation
!Notation
Line 69: Line 70:
|}
|}


===Hyperbolic functions===
[[Hyperbolic function]]s:
{| class="wikitable"
{| class="wikitable" style="margin-top:0"
!Name
!Name
!Notation
!Notation
Line 88: Line 89:
|-
|-
|[[Hyperbolic cosecant]]
|[[Hyperbolic cosecant]]
|<math>\operatorname{csch}(x)</math>
|<math>\mathrm{csch}(x)</math>
|<math>2/(e^{x}-e^{-x})</math>
|<math>2/(e^{x}-e^{-x})</math>
|-
|-
|[[Hyperbolic secant]]
|[[Hyperbolic secant]]
|<math>\operatorname{sech}(x)</math>
|<math>\mathrm{sech}(x)</math>
|<math>2/(e^{x}+e^{-x})</math>
|<math>2/(e^{x}+e^{-x})</math>
|-
|-
Line 100: Line 101:
|}
|}


===Inverse trigonometric functions===
[[Inverse trigonometric function]]s:
{| class="wikitable" style="margin-top:0"
!Name
!Notation
!Triangle formula
!Exponential formula
|-
|[[Arcsine]]
|<math>\arcsin(x)</math>
|
|
|-
|[[Arccosine]]
|<math>\arccos(x)</math>
|
|
|-
|[[Arctangent]]
|<math>\arctan(x)</math>
|
|
|-
|[[Arccosecant]]
|<math>\arccsc(x)</math>
|
|
|-
|[[Arcsecant]]
|<math>\arcsec(x)</math>
|
|
|-
|[[Arccotangent]]
|<math>\arccot(x)</math>
|
|
|}
 


===Inverse hyperbolic functions===
[[Inverse hyperbolic function]]s:
{| class="wikitable"
{| class="wikitable" style="margin-top:0"
!Name
!Name
!Notation
!Notation
Line 109: Line 147:
|-
|-
|[[Inverse hyperbolic sine]]
|[[Inverse hyperbolic sine]]
|<math>\operatorname{arcsinh}(x)</math>
|<math>\mathrm{arcsinh}(x)</math>
|<math>\ln{x+\sqrt{x^2+1}}</math>
|<math>\ln{(x+\sqrt{x^2+1)}}</math>
|-
|-
|[[Inverse hyperbolic cosine]]
|[[Inverse hyperbolic cosine]]
|<math>\operatorname{arccosh}(x)</math>
|<math>\mathrm{arccosh}(x)</math>
|<math>\ln{x+\sqrt{x^2-1}}</math>
|<math>\ln{(x+\sqrt{x^2-1})}</math>
|-
|-
|[[Inverse hyperbolic tangent]]
|[[Inverse hyperbolic tangent]]
|<math>\operatorname{arctanh}(x)</math>
|<math>\mathrm{arctanh}(x)</math>
|<math>\frac{1}{2}\ln{\frac{1+x}{1-x}}</math>
|<math>\frac{1}{2}\ln{\frac{1+x}{1-x}}</math>
|-
|-
|[[Inverse hyperbolic cosecant]]
|[[Inverse hyperbolic cosecant]]
|<math>\operatorname{arccsch}(x)</math>
|<math>\mathrm{arccsch}(x)</math>
|
|
|-
|-
|[[Inverse hyperbolic secant]]
|[[Inverse hyperbolic secant]]
|<math>\operatorname{arcsech}(x)</math>
|<math>\mathrm{arcsech}(x)</math>
|
|
|-
|-
|[[Inverse hyperbolic cotangent]]
|[[Inverse hyperbolic cotangent]]
|<math>\operatorname{arccoth}(x)</math>
|<math>\mathrm{arccoth}(x)</math>
|
|
|}
|}


===Other===
Other:
* [[Sinc function]]
* [[Lambert W-function]]
* [[Lambert W-function]]


Line 233: Line 272:
|<math>-1,1</math>
|<math>-1,1</math>
|<math>1</math>
|<math>1</math>
|
|<math>1</math>, <math>x</math>, <math>{\textstyle \frac{1}{2}}</math><math>(3x^2-1)</math>, <math>{\textstyle \frac{1}{2}}</math><math>(5x^3-3x)</math>, &hellip;
|-
|-
|[[Hermite polynomials|Hermite]]
|[[Hermite polynomials|Hermite]]
Line 275: Line 314:
|<math>1 \cdot 3 \cdot 5 \cdots x \;\;(x \; \mathrm{odd})</math><br/>
|<math>1 \cdot 3 \cdot 5 \cdots x \;\;(x \; \mathrm{odd})</math><br/>
<math>2 \cdot 4 \cdot 6 \cdots x \;\;(x \; \mathrm{even})</math>
<math>2 \cdot 4 \cdot 6 \cdots x \;\;(x \; \mathrm{even})</math>
|
|<math>\frac{\Gamma(x+1)}{2^\frac{x-1}2 *\Gamma(\frac{x+1}2)}\;\;(x \; \mathrm{odd})</math>
<br/><math>2^\frac{x-1}2 * \Gamma(\frac{x+1}2) \;\;(x \; \mathrm{even}) </math>
|-
|-
|[[Binomial coefficient]]
|[[Binomial coefficient]]
Line 332: Line 372:
* [[Hypergeometric function]]s
* [[Hypergeometric function]]s
* [[Meijer G-function]]
* [[Meijer G-function]]
==See also==
* [[Catalog of mathematical constants]]
* [[Catalog of probability distributions]]
* [[Catalog of number sequences]]
==Further reading==
* Introductory material: {{cite book | author = N. N. Lebedev | title = Special Functions and their applications | publisher = Dover | date = 1972 | address = New York}}
==References==
* {{cite book | author = Milton Abramowitz and Irene A. Stegun | title = Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables | publisher = Dover | date = 1964 | address = New York}} ([http://www.math.sfu.ca/~cbm/aands/ available online])
* {{cite book | author = I. S. Gradstein and I. M. Ryzhik | title = Table of integrals, series and products | publisher = Academic Press | date = 2000 | address = London}}
* {{cite book | author = A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi | title = Higher Transcendental Functions (Vol I and II) | publisher = McGraw-Hill Book Company | date = 1953 | address = New York - Toronto - London}}
[[Category:CZ Live]]
[[Category:Mathematics Workgroup]]

Latest revision as of 13:58, 8 December 2009


Special functions are mathematical functions that turn up so often that they have been named. This page lists the most common special functions by category, along with some of the properties that are important to functions belonging to each category. It must be stressed that there is no single way to categorize functions; any practical classification will contain overlapping categories.

Algebraic functions

Complex parts

Elementary transcendental functions

Name Notation
Exponential function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp(x)} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^x}
Natural logarithm Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \log(x)} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln(x)}

Trigonometric functions:

Name Notation Triangle formula Exponential formula
Sine Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin(x)} Opposite / Hypotenuse Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{ix}-e^{-ix})/2i}
Cosine Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(x)} Adjacent / Hypotenuse Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{ix}+e^{-ix})/2}
Tangent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tan(x)} Opposite / Adjacent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\mathit{i}(e^{\mathit{i}x}-e^{-\mathit{i}x})/(e^{\mathit{i}x}+e^{-\mathit{i}x})}
Cosecant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \csc(x)} Hypotenuse / Opposite
Secant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sec(x)} Hypotenuse / Adjacent
Cotangent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cot(x)} Adjacent / Opposite

Hyperbolic functions:

Name Notation Exponential formula
Hyperbolic sine Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sinh(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{x}-e^{-x})/2}
Hyperbolic cosine Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cosh(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{x}+e^{-x})/2}
Hyperbolic tangent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tanh(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{x}-e^{-x})/(e^{x}+e^{-x})}
Hyperbolic cosecant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{csch}(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2/(e^{x}-e^{-x})}
Hyperbolic secant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{sech}(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2/(e^{x}+e^{-x})}
Hyperbolic cotangent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \coth(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (e^{x}+e^{-x})/(e^{x}-e^{-x})}

Inverse trigonometric functions:

Name Notation Triangle formula Exponential formula
Arcsine Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \arcsin(x)}
Arccosine Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \arccos(x)}
Arctangent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \arctan(x)}
Arccosecant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \arccsc(x)}
Arcsecant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \arcsec(x)}
Arccotangent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \arccot(x)}


Inverse hyperbolic functions:

Name Notation Logarithmic formula
Inverse hyperbolic sine Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{arcsinh}(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln{(x+\sqrt{x^2+1)}}}
Inverse hyperbolic cosine Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{arccosh}(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \ln{(x+\sqrt{x^2-1})}}
Inverse hyperbolic tangent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{arctanh}(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}\ln{\frac{1+x}{1-x}}}
Inverse hyperbolic cosecant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{arccsch}(x)}
Inverse hyperbolic secant Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{arcsech}(x)}
Inverse hyperbolic cotangent Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{arccoth}(x)}

Other:

Exponential integral related

Function Notation Definition
Exponential integral Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{Ei}(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle -\int_{-x}^{\infty} \frac{e^{-t}}{t} \, dt}
Logarithmic integral Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{li}(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \int_0^x \frac{1}{\ln t} \, dt}

Trigonometric integrals:

Function Notation Definition
Sine integral Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{Si}(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \int_0^x \frac{\sin t}{t} \, dt}
Hyperbolic sine integral Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{Shi}(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \int_0^x \frac{\sinh t}{t} \, dt}
Cosine integral Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm{Ci}(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textstyle \gamma + \ln x + \int_0^x \frac{\cos t - 1}{t} \, dt}
Hyperbolic cosine integral

Note: is Euler's constant

Related to the normal distribution:

Name Notation Definition
Gaussian function none standardized
Error function
Complementary error function

See also gamma related functions below; in particular, the incomplete gamma functions.

Bessel function related

Elliptic integrals

Orthogonal polynomials

See catalog of orthogonal polynomials for a more detailed listing.

Name Notation Interval Weight function , , , , ...
Chebyshev (first kind) , , , , ...
Chebyshev (second kind) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1,1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (1-x^2)^{1/2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2x} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4x^2 - 1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8x^3 - 4x} , ...
Legendre Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_n} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -1,1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\textstyle \frac{1}{2}}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (3x^2-1)} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\textstyle \frac{1}{2}}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (5x^3-3x)} , …
Hermite Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_n} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\infty,\infty} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{-x^2}}
Laguerre Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_n} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0,\infty} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{-x}}
Associated Laguerre Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle L_n^{(\alpha)}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0,\infty} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{\alpha} e^{-x}}

Factorial and gamma related

Name Notation Discrete formula Continuous formula
Factorial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x!} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 \cdot 2 \cdot 3 \cdots x} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma(x+1)}
Gamma function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma(x)} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x-1)!} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma(x)}
Double factorial


Binomial coefficient
Rising factorial
Falling factorial
Beta function
Harmonic number
Digamma function
Polygamma function
(of order m)

Notes:

Zeta function related

Hypergeometric functions

Note: many of the preceding functions are special cases of the following: