Talk:Human uniqueness: Difference between revisions
imported>Daniel Mietchen (started) |
imported>Eva Wollrab |
||
(27 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{subpages}} | {{subpages}} | ||
== Structure of the talk == | |||
:Looks good so far. [[User:Daniel Mietchen|Daniel Mietchen]] 11:14, 3 September 2008 (CDT) | |||
'''Teil I: Genetische und physiologische Einzigartigkeit (?)''' | |||
''- Evolution'' | |||
''- Vergleich Mensch-Affe'' | |||
* Augen | |||
* Sprache | |||
* Genom | |||
* Verhalten | |||
'''Teil II: Einzigartigkeit in Sprache und Musik(?)''' | |||
''- Sprache: Definition'' | |||
''- Sprache: menschliche Einzigartigkeit (?)'' | |||
''- Vergleich: Musik – Sprache'' | |||
''- Musik: Mensch – Tier'' | |||
'''Zusammenfassung & Schluss''' | |||
Is the human race creation's crowning glory? | |||
Biochemical research showed that all living is based on a genetic code and that all living creatures share the citric acid cycle. Nontheless humans always postulated to be unique creatures superior to all animals. But what makes human unique in nature? Might music and language be criterias which differentiate humans from animals? | |||
== Scientific comparison between apes and human == | |||
=== Genetic and physiologic comparisons === | |||
==== timescale of [[evolution]] ==== | |||
4650 millionen years: first [[microorganism]] | |||
408 millionen years: first [[animals]] on land | |||
205 millionen years: first [[mammals]] | |||
65 millionen years: first [[hominid]]s | |||
==== differences between modern [[humans]] and [[ape]]s ==== | |||
Many physiologic differences between humans and apes are obvious, namely the upright walk, the bigger [[brain]] and smaller canines to mention only few. | |||
Also differences in behaviour are well knows so as language and the use of tools. Here should be stressed that all behavioural changes came along with physiological ones. The use of tools for instance would not have been possible without the alteration of an opponable thumb. Speech as well presupposes a change in the vocal tract. | |||
In the following thtere shall be described only few aspects of the differences between human and apes. | |||
'''Example''': | |||
''Eyes:'' | |||
Comparing Human eyes with primate eyes, one finds immediately three strong differences: | |||
1) the sclera is whithout any pigmentation | |||
2) the sclera is large compared to the size of the eye | |||
3) the eye outline is elongated in the horizontal direction | |||
Hiromi Kobayashi and Shiro Kohshima examined these points and suggested some hypothesis explaining the adaptive meaning of these particularities. therfore they measured several parameters (WHR: width/height ratio; SSI: exposed sclera size; scleral colour) of some apes and compared them to the values of humans from different sexes and races. | |||
1) | |||
--> better contrast iris-sclera --> enhances gaze signal (human) / camouflages the gaze direction against e.g. predators | |||
--> coloration --> easier to discern gaze direction --> possibility of gaze signals --> increased co-operation possible (e.g. hunting, scavenging) | |||
2, 3) --> extension of the visual field by eyeball movement (the larger the body/head the larger the costs for moving) | |||
--> seems that horizontally elongated outline adaptive to terrestrial life (--> experiments with apes living in different areas show that terrestrial apes show a higher frequency oof horizontal scanning) | |||
=== Comparison of [[gene]]s === | |||
The genome of humans and chimps is to 98.7% identical. Although the differences are not distributed homogeneously over the genome the similarity is astonishing. But why are humans and chimps so different? Where are the differences and how did they evolve? | |||
==== Single nucleotide polymorphism (SNP): [[mutation]] in one base ==== | |||
- 35 million SNPs --> frequency of 1.06% | |||
- resposible for 1.23% of differences between human and chimp genome | |||
- Changes in ragulatory regions affect transcription factors and gene expression | |||
--> changes in brain expression (transcriptional regulation, signal transduction, [[lipid]] [[metabolism]], cell adhesion) | |||
==== gene/segmental duplications/insertions deletions ==== | |||
- 5 million insertions (1-15bp) | |||
==== genome rearrangement ==== | |||
It seems that the non-coding part of the [[DNA]], the regions where regulatory parts lie are twice as much under selection than the coding part. | |||
== Human uniqueness in language and [[music]] (?) == | |||
A human caracteristic is the broad use of language as a mean of [[communication]]. The variaty of language within the human race might let us believe that language in this coplexity is something unique in nature. To prove this thesis one has to define the complexity of language in a first step and on the basis of the features defined one has to test form of animal communication for these caracteristics. | |||
A second question which belongs to the examination of language is the question whether music in its manner, use and appearance in human culture is a proof for human uniqueness. Here questions like: What is the difference between music and language? What distinguishes human songs from e.g. bird songs or whale songs? | |||
These are the two aspects to be studied in the following. | |||
=== Language === | |||
In 1960 Charles Hockett gave a defintion for language. Therefore he considered 13 aspects (1.-13.) that caracterize language. In a later paper (1968) he and Stuart Altmann added three further aspects (14.-16.) to define laguage. | |||
1. Many animals communicate by use of the '''Vocal-auditory channel'''. Exceptions for this feature are [[bee]]s which use dances or humans using sign language. | |||
2. Language uses '''broadcast transmission'''. Messages are transmitted through space and can be perceived by serveral animals. It allows communication between animals that cannot see each other. | |||
3. Another caracteristic for language is its '''rapid fading'''. In contrast to e.g. scents deposited to mark territories, language (unless written language) does not persist in the environment. | |||
4. '''Interchangebility'''describes the fact that senders and receivers can be interchanged. Whereas in the case of mating calls often only members of one sex utter calls. | |||
5. In language exists a '''total feedback''. That means that the sender receives his own calls. | |||
6. Language underlies a '''specialization'''. Its sole aim is communication and it has no other e.g. physiological function. | |||
7. A further feature of language is '''semanticity'''. The single signs of a language are associated with and elements of the world around. | |||
8. Except of some onomatopoetic elements, language exhibits '''arbitrariness'''. Normally signals are not alike the elements they denote. | |||
9. Language features '''discreteness''': signal are constructed by smaller parts each one containing a message. In human language phrases consist of words which can be interchanged to other phrases with different meanings. | |||
10. There is no genetical reason for language - it is learned and not instinctive. Therefore there is a '''traditional transmission''' of language. | |||
11. Language can be used to communicate about things or events that take place far away or at a different time. Thus it shows the caracteristic of '''displacement'''. | |||
12. A further feature of language is its '''productivity'''. It is possible to create new messages by the existing elements of a language. | |||
13. The aspect of '''duality of pattern''' is related to the discreteness of language. There are at least to levels of structures meaningless units like sounds are combined to larger meaningsful element (e.g. words) that might even form complexer elements (e.g. phrases). | |||
14. '''Prevarication''': by means of language it is possible to mislead perceivers by uttering false signals. | |||
15. Language can be used to talk about language. Another caracteristic of language is therefore '''reflexiveness'''. | |||
16. As a implication of the traditional transmission of language one can find as a further feature of language the '''learnability'''. It denotes the aspect that a language can be learned. | |||
Regarding the first 13 caracteristics that were proposed, human uniqueness lies in the fact that human language shows all the single caracteristics (except for the vocal-auditory feature concerning sign language). Nontheless all features proposed can also be found in animal language. The caracteristic of displacement for example can be found in dances, bees use to communicate about food sources or new hive locations displaced in space which other bees will use in their future behaviour (displacement in time). | |||
Other caracteristics, which are considered to bee unique for humans, are also discussed. One of them is the "structure dependence" found in human language. It describes the fact that e.g. parenthetical phrases exist and are understood because of the position and [[grammar]] of the parenthesis. | |||
ex: The people [who called and wanted to rent your house when you go away next year] are from California. | |||
Here the parenthesis is clear beacaus of the structure as well as the grammar, for the verb "are" belongs to "people" and differs in time from the verbs "called" and "wanted". | |||
Another supplementary feature that is supposed to be unique for human language is "recursion". It can be made clear by an example: | |||
ex: (i) the cat[the dog chased] killed the mouse | |||
(ii) the mouse [the cat[the dog chased] killed] ate the malt | |||
That feature should be unique in human language, although it is hard to test for several reasons: | |||
(i) one has to show that phrases are embedde inside each other | |||
(ii) the number of elements in the first part of the phrase must be the same as in the last part of the phrase. | |||
(iii) the recursion must in theory be indefinetly, which is hard to test because of memory limitations. | |||
These caracteristics of language also show the differences between innate calls and language. It is obvious that innate calls are not as complex as language is. Additionnally they are not generative and cannot be learned. | |||
=== Music === | |||
==== Comparison of language and music ==== | |||
Now that language is defined by several features, these caracteristics can also be used to define music and to distinguish it from language and especially from innate calls respectively. Considering "physical" aspects language, innate calls and music have things in common like the broadcast transmission, the rapid fading and the total feedback. But one can clear differatiate music from innate calls by complexity, productivity and discreteness to name only some features. | |||
In contrast one has to take a deeper look on the differences between music and language to get aware of the nature of music. To begin with the similarities between language and music, one can start with the complexity and generativity of music. Like in language one can use number of single elements to create a new piece of music which can be very complexe. Thus music and language share also the caracteristic of discreteness. Like in language music is also transposable i.e. melodies do not change performed from a higher starting note, since melodies are caracterized by the relationship between notes. Music and language are also both transmitted culturally, where music appears in contrast to language often in a performative context. Humans apply songs often in specific social context e.g. rituals. | |||
One fundamental difference between language and music is the basis they are starting from. Music is made up by discrete pitches (notes), language does not have a sound composed by discrete pitches. Additionally music has a beat and is therefore in contrast to language isochronic. | |||
==== Comparison of human and animal music ==== | |||
First of all one has to define an animal song e.g. a birdsong. In the following an animal song will mean a complex, learned vocalization. The focus will be on birdsongs although other forms of animal music like whale songs and even instrumental music like the song of a woodpecker exist. | |||
Talking about human music singing and playing instruments is associated with pleasure and culture and not necessarily with an instictive behaviour. So in a first step one can wonder why we find music in animality and about its origin. Knowing that the common ancestors of birds and humans, the reptiles, did not sing, music must be an analogous and no homologous attribute of humans and birds. The difference between birdsong and human songs lies in its function. Although one could observe young male songbirds singing alone, birdsongs serve communication. Also most animal races singing is primarily a male behaviour. In contrast human singing is not [[gender]] specific and is perfomed for several reasons but not in principally for communication. | |||
== Conclusion + Discussion == | |||
== References == | |||
*{{cite journal | |||
| author = Arbiza, L. | |||
| coauthors = Dopazo, J.; Dopazo, H. | |||
| year = 2006 | |||
| title = Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome | |||
| journal = PLoS Comput Biol | |||
| volume = 2 | |||
| issue = 4 | |||
| pages = e38 | |||
| doi = 10.1371/journal.pcbi.0020038 | |||
}} | |||
*{{cite journal | |||
| author = Carroll, S.B. | |||
| year = 2003 | |||
| title = Genetics and the making of Homo sapiens | |||
| journal = Nature | |||
| volume = 422 | |||
| issue = 6934 | |||
| pages = 849-57 | |||
| doi = 10.1038/nature01495 | |||
}} | |||
*{{cite book | |||
| author = Coleman, J.D. | |||
| year = 2006 | |||
| chapter = Design Features of Language | |||
| title = Encyclopedia of Language & Linguistics | |||
| editor = Brown, K. | |||
| pages = 471-475 | |||
| doi = 10.1016/B0-08-044854-2/04743-X | |||
}} | |||
*{{cite journal | |||
| author = Fitch, W.T. | |||
| year = 2006 | |||
| title = The biology and evolution of music: A comparative perspective | |||
| journal = Cognition | |||
| volume = 100 | |||
| issue = 1 | |||
| pages = 173-215 | |||
| doi = 10.1016/j.cognition.2005.11.009 | |||
}} | |||
*{{cite journal | |||
| author = Fitch, W.T. | |||
| year = 2000 | |||
| title = The evolution of speech: a comparative review | |||
| journal = Trends in Cognitive Sciences | |||
| volume = 4 | |||
| issue = 7 | |||
| pages = 258-267 | |||
| doi = 10.1016/S1364-6613(00)01494-7 | |||
}} | |||
*{{cite journal | |||
| author = Kobayashi, H. | |||
| coauthors = Kohshima, S. | |||
| year = 2001 | |||
| title = Unique morphology of the human eye and its adaptive meaning: comparative studies on external morphology of the primate eye | |||
| journal = Journal of Human Evolution | |||
| volume = 40 | |||
| issue = 5 | |||
| pages = 419-435 | |||
| doi = 10.1006/jhev.2001.0468 | |||
}} | |||
*{{cite journal | |||
| author = Sikela, J.M. | |||
| year = 2006 | |||
| title = The jewels of our genome: the search for the genomic changes underlying the evolutionarily unique capacities of the human brain | |||
| journal = PLoS Genet | |||
| volume = 2 | |||
| issue = 5 | |||
| pages = e80 | |||
| doi = 10.1371/journal.pgen.0020080 | |||
}} | |||
== Article structure == | |||
What I suggest here is to list (possibly on a subpage), for each candidate uniqueness, the following points: | |||
#Trait (e.g. tool use) | |||
#Definition of trait | |||
#Taxonomic scope of uniqueness claim | |||
#Pro uniqueness hypothesis (source) | |||
#Potential counter examples (source) | |||
#Aspects of the definition targeted by counter example, possibly including suggested amendments to definition. | |||
Should this go into a table (possibly on a subpage) or list, or how should this be structured? | |||
[[User:Daniel Mietchen|Daniel Mietchen]] 06:14, 5 June 2008 (CDT) |
Latest revision as of 13:19, 8 October 2008
Structure of the talk
- Looks good so far. Daniel Mietchen 11:14, 3 September 2008 (CDT)
Teil I: Genetische und physiologische Einzigartigkeit (?)
- Evolution
- Vergleich Mensch-Affe
- Augen
- Sprache
- Genom
- Verhalten
Teil II: Einzigartigkeit in Sprache und Musik(?)
- Sprache: Definition
- Sprache: menschliche Einzigartigkeit (?)
- Vergleich: Musik – Sprache
- Musik: Mensch – Tier
Zusammenfassung & Schluss
Is the human race creation's crowning glory? Biochemical research showed that all living is based on a genetic code and that all living creatures share the citric acid cycle. Nontheless humans always postulated to be unique creatures superior to all animals. But what makes human unique in nature? Might music and language be criterias which differentiate humans from animals?
Scientific comparison between apes and human
Genetic and physiologic comparisons
timescale of evolution
4650 millionen years: first microorganism
408 millionen years: first animals on land
205 millionen years: first mammals
65 millionen years: first hominids
differences between modern humans and apes
Many physiologic differences between humans and apes are obvious, namely the upright walk, the bigger brain and smaller canines to mention only few. Also differences in behaviour are well knows so as language and the use of tools. Here should be stressed that all behavioural changes came along with physiological ones. The use of tools for instance would not have been possible without the alteration of an opponable thumb. Speech as well presupposes a change in the vocal tract. In the following thtere shall be described only few aspects of the differences between human and apes.
Example:
Eyes:
Comparing Human eyes with primate eyes, one finds immediately three strong differences:
1) the sclera is whithout any pigmentation
2) the sclera is large compared to the size of the eye
3) the eye outline is elongated in the horizontal direction
Hiromi Kobayashi and Shiro Kohshima examined these points and suggested some hypothesis explaining the adaptive meaning of these particularities. therfore they measured several parameters (WHR: width/height ratio; SSI: exposed sclera size; scleral colour) of some apes and compared them to the values of humans from different sexes and races.
1)
--> better contrast iris-sclera --> enhances gaze signal (human) / camouflages the gaze direction against e.g. predators
--> coloration --> easier to discern gaze direction --> possibility of gaze signals --> increased co-operation possible (e.g. hunting, scavenging)
2, 3) --> extension of the visual field by eyeball movement (the larger the body/head the larger the costs for moving)
--> seems that horizontally elongated outline adaptive to terrestrial life (--> experiments with apes living in different areas show that terrestrial apes show a higher frequency oof horizontal scanning)
Comparison of genes
The genome of humans and chimps is to 98.7% identical. Although the differences are not distributed homogeneously over the genome the similarity is astonishing. But why are humans and chimps so different? Where are the differences and how did they evolve?
Single nucleotide polymorphism (SNP): mutation in one base
- 35 million SNPs --> frequency of 1.06%
- resposible for 1.23% of differences between human and chimp genome
- Changes in ragulatory regions affect transcription factors and gene expression
--> changes in brain expression (transcriptional regulation, signal transduction, lipid metabolism, cell adhesion)
gene/segmental duplications/insertions deletions
- 5 million insertions (1-15bp)
genome rearrangement
It seems that the non-coding part of the DNA, the regions where regulatory parts lie are twice as much under selection than the coding part.
Human uniqueness in language and music (?)
A human caracteristic is the broad use of language as a mean of communication. The variaty of language within the human race might let us believe that language in this coplexity is something unique in nature. To prove this thesis one has to define the complexity of language in a first step and on the basis of the features defined one has to test form of animal communication for these caracteristics. A second question which belongs to the examination of language is the question whether music in its manner, use and appearance in human culture is a proof for human uniqueness. Here questions like: What is the difference between music and language? What distinguishes human songs from e.g. bird songs or whale songs? These are the two aspects to be studied in the following.
Language
In 1960 Charles Hockett gave a defintion for language. Therefore he considered 13 aspects (1.-13.) that caracterize language. In a later paper (1968) he and Stuart Altmann added three further aspects (14.-16.) to define laguage.
1. Many animals communicate by use of the Vocal-auditory channel. Exceptions for this feature are bees which use dances or humans using sign language.
2. Language uses broadcast transmission. Messages are transmitted through space and can be perceived by serveral animals. It allows communication between animals that cannot see each other.
3. Another caracteristic for language is its rapid fading. In contrast to e.g. scents deposited to mark territories, language (unless written language) does not persist in the environment.
4. Interchangebilitydescribes the fact that senders and receivers can be interchanged. Whereas in the case of mating calls often only members of one sex utter calls.
5. In language exists a 'total feedback. That means that the sender receives his own calls.
6. Language underlies a specialization. Its sole aim is communication and it has no other e.g. physiological function.
7. A further feature of language is semanticity. The single signs of a language are associated with and elements of the world around.
8. Except of some onomatopoetic elements, language exhibits arbitrariness. Normally signals are not alike the elements they denote.
9. Language features discreteness: signal are constructed by smaller parts each one containing a message. In human language phrases consist of words which can be interchanged to other phrases with different meanings.
10. There is no genetical reason for language - it is learned and not instinctive. Therefore there is a traditional transmission of language.
11. Language can be used to communicate about things or events that take place far away or at a different time. Thus it shows the caracteristic of displacement.
12. A further feature of language is its productivity. It is possible to create new messages by the existing elements of a language.
13. The aspect of duality of pattern is related to the discreteness of language. There are at least to levels of structures meaningless units like sounds are combined to larger meaningsful element (e.g. words) that might even form complexer elements (e.g. phrases).
14. Prevarication: by means of language it is possible to mislead perceivers by uttering false signals.
15. Language can be used to talk about language. Another caracteristic of language is therefore reflexiveness.
16. As a implication of the traditional transmission of language one can find as a further feature of language the learnability. It denotes the aspect that a language can be learned.
Regarding the first 13 caracteristics that were proposed, human uniqueness lies in the fact that human language shows all the single caracteristics (except for the vocal-auditory feature concerning sign language). Nontheless all features proposed can also be found in animal language. The caracteristic of displacement for example can be found in dances, bees use to communicate about food sources or new hive locations displaced in space which other bees will use in their future behaviour (displacement in time).
Other caracteristics, which are considered to bee unique for humans, are also discussed. One of them is the "structure dependence" found in human language. It describes the fact that e.g. parenthetical phrases exist and are understood because of the position and grammar of the parenthesis.
ex: The people [who called and wanted to rent your house when you go away next year] are from California.
Here the parenthesis is clear beacaus of the structure as well as the grammar, for the verb "are" belongs to "people" and differs in time from the verbs "called" and "wanted".
Another supplementary feature that is supposed to be unique for human language is "recursion". It can be made clear by an example:
ex: (i) the cat[the dog chased] killed the mouse (ii) the mouse [the cat[the dog chased] killed] ate the malt
That feature should be unique in human language, although it is hard to test for several reasons:
(i) one has to show that phrases are embedde inside each other
(ii) the number of elements in the first part of the phrase must be the same as in the last part of the phrase.
(iii) the recursion must in theory be indefinetly, which is hard to test because of memory limitations.
These caracteristics of language also show the differences between innate calls and language. It is obvious that innate calls are not as complex as language is. Additionnally they are not generative and cannot be learned.
Music
Comparison of language and music
Now that language is defined by several features, these caracteristics can also be used to define music and to distinguish it from language and especially from innate calls respectively. Considering "physical" aspects language, innate calls and music have things in common like the broadcast transmission, the rapid fading and the total feedback. But one can clear differatiate music from innate calls by complexity, productivity and discreteness to name only some features. In contrast one has to take a deeper look on the differences between music and language to get aware of the nature of music. To begin with the similarities between language and music, one can start with the complexity and generativity of music. Like in language one can use number of single elements to create a new piece of music which can be very complexe. Thus music and language share also the caracteristic of discreteness. Like in language music is also transposable i.e. melodies do not change performed from a higher starting note, since melodies are caracterized by the relationship between notes. Music and language are also both transmitted culturally, where music appears in contrast to language often in a performative context. Humans apply songs often in specific social context e.g. rituals. One fundamental difference between language and music is the basis they are starting from. Music is made up by discrete pitches (notes), language does not have a sound composed by discrete pitches. Additionally music has a beat and is therefore in contrast to language isochronic.
Comparison of human and animal music
First of all one has to define an animal song e.g. a birdsong. In the following an animal song will mean a complex, learned vocalization. The focus will be on birdsongs although other forms of animal music like whale songs and even instrumental music like the song of a woodpecker exist. Talking about human music singing and playing instruments is associated with pleasure and culture and not necessarily with an instictive behaviour. So in a first step one can wonder why we find music in animality and about its origin. Knowing that the common ancestors of birds and humans, the reptiles, did not sing, music must be an analogous and no homologous attribute of humans and birds. The difference between birdsong and human songs lies in its function. Although one could observe young male songbirds singing alone, birdsongs serve communication. Also most animal races singing is primarily a male behaviour. In contrast human singing is not gender specific and is perfomed for several reasons but not in principally for communication.
Conclusion + Discussion
References
- Arbiza, L.; Dopazo, J.; Dopazo, H. (2006). "Positive selection, relaxation, and acceleration in the evolution of the human and chimp genome". PLoS Comput Biol 2 (4): e38. DOI:10.1371/journal.pcbi.0020038. Research Blogging.
- Carroll, S.B. (2003). "Genetics and the making of Homo sapiens". Nature 422 (6934): 849-57. DOI:10.1038/nature01495. Research Blogging.
- Coleman, J.D. (2006). “Design Features of Language”, Brown, K.: Encyclopedia of Language & Linguistics, 471-475. DOI:10.1016/B0-08-044854-2/04743-X.
- Fitch, W.T. (2006). "The biology and evolution of music: A comparative perspective". Cognition 100 (1): 173-215. DOI:10.1016/j.cognition.2005.11.009. Research Blogging.
- Fitch, W.T. (2000). "The evolution of speech: a comparative review". Trends in Cognitive Sciences 4 (7): 258-267. DOI:10.1016/S1364-6613(00)01494-7. Research Blogging.
- Kobayashi, H.; Kohshima, S. (2001). "Unique morphology of the human eye and its adaptive meaning: comparative studies on external morphology of the primate eye". Journal of Human Evolution 40 (5): 419-435. DOI:10.1006/jhev.2001.0468. Research Blogging.
- Sikela, J.M. (2006). "The jewels of our genome: the search for the genomic changes underlying the evolutionarily unique capacities of the human brain". PLoS Genet 2 (5): e80. DOI:10.1371/journal.pgen.0020080. Research Blogging.
Article structure
What I suggest here is to list (possibly on a subpage), for each candidate uniqueness, the following points:
- Trait (e.g. tool use)
- Definition of trait
- Taxonomic scope of uniqueness claim
- Pro uniqueness hypothesis (source)
- Potential counter examples (source)
- Aspects of the definition targeted by counter example, possibly including suggested amendments to definition.
Should this go into a table (possibly on a subpage) or list, or how should this be structured? Daniel Mietchen 06:14, 5 June 2008 (CDT)
- Article with Definition
- Biology Category Check
- Anthropology Category Check
- Psychology Category Check
- Developing Articles
- Nonstub Articles
- Internal Articles
- Biology Developing Articles
- Biology Nonstub Articles
- Biology Internal Articles
- Anthropology Developing Articles
- Anthropology Nonstub Articles
- Anthropology Internal Articles
- Psychology Developing Articles
- Psychology Nonstub Articles
- Psychology Internal Articles
- Biology Underlinked Articles
- Underlinked Articles
- Anthropology Underlinked Articles
- Psychology Underlinked Articles
- Evolutionary Biology tag
- Evolutionary Psychology tag