User:John R. Brews/Coriolis force: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>John R. Brews
No edit summary
 
(18 intermediate revisions by one other user not shown)
Line 1: Line 1:
{{TOC|right}}
{{AccountNotLive}}
{{Image|Earth coordinates.PNG|right|250px|Coordinate system at latitude φ with ''x''-axis east, ''y''-axis north and ''z''-axis upward (that is, radially outward from center of sphere).}}
===Quarks===
===Rotating sphere===
Consider a location with latitude ''φ'' on a sphere that is rotating around the north-south axis.<ref name=Menke>{{Cite book|title=Geophysical Theory |author=William Menke & Dallas Abbott |pages=124–126 |url=http://books.google.com/?id=XP3R_pVnOoEC&pg=PA120&dq=spheres+rotating++Coriolis
|isbn=0231067925 |year=1990 |publisher=Columbia University Press}}</ref> A local coordinate system is set up with the ''x''-axis horizontally due east, the ''y''-axis horizontally due north and the ''z''-axis vertically upwards. The rotation vector, velocity of movement and Coriolis acceleration expressed in this local coordinate system (listing components in the order East (''e''), North (''n'') and Upward (''u'')) are:


:<math>\boldsymbol{ \Omega} = \omega \begin{pmatrix} 0 \\ \cos \varphi \\ \sin \varphi \end{pmatrix}\ ,</math> &nbsp; &nbsp; <math>\boldsymbol{ v} = \begin{pmatrix} v_e \\ v_n \\ v_u \end{pmatrix}\ ,</math>
The quarks that may engage one another in reactions are determined by the [[Cabbibo-Kobayashi-Maskawa matrix]]:[http://books.google.com/books?id=f89yg8a1t-EC&pg=PA23&dq=Cabibbo+angle&hl=en&ei=XYZvToTqN7PZiAKM55juBg&sa=X&oi=book_result&ct=result&resnum=2&ved=0CDIQ6AEwATgK#v=onepage&q=Cabibbo%20angle&f=false Morii]
:<math>\boldsymbol{ a_{Cor}} =-2\boldsymbol{\Omega \times v}= 2\,\omega\, \begin{pmatrix} v_n \sin \varphi-v_u \cos \varphi \\ -v_e \sin \varphi \\ v_e \cos\varphi\end{pmatrix}\ .</math>
:<math>\begin{pmatrix}
d'\\
s'\\
b'\\
\end{pmatrix} = \begin{pmatrix}
U_{ud}&U_{us}&U_{ub}\\
U_{cd}&U_{cs}&U_{cb}\\
U_{td}&U_{ts}&U_{tb}\\
\end{pmatrix}=\begin{pmatrix}
d\\
s\\
b\\
\end{pmatrix} </math>


When considering atmospheric or oceanic dynamics, the vertical velocity is small and the vertical component of the Coriolis acceleration is small compared to gravity. For such cases, only the horizontal (East and North) components matter. The restriction of the above to the horizontal plane is (setting ''v<sub>u</sub>''=0):
The quarks can be arranged to exhibit right- and left-handedness, subscripts ''L'' and ''R'', to resemble the leptons. The right-handed quarks do not couple to the weak interaction, and are labeled with subscript ''R''. The left-handed quarks corresponding to these right-handed quarks are mixtures of quarks. Thus, the up and down quarks are assembled as:


:<math> \boldsymbol{ v} = \begin{pmatrix} v_e \\ v_n\end{pmatrix}\ ,</math> &nbsp; &nbsp; <math>\boldsymbol{ a}_c = \begin{pmatrix} v_n \\ -v_e\end{pmatrix}\ f\ , </math>
:<math> \tbinom {u}{d}_L \ ; \ \ u_R,\ d_R \ .</math>


where ''f'' = {{nowrap|2''&omega;'' sin''&phi;''}} is called the ''Coriolis parameter''.<ref name=Norbury>
The other generations are arranged similarly:


For a discussion of the role of the Coriolis parameter in ocean dynamics see {{cite book |title=Large-scale Atmosphere-ocean Dynamics: Analytical methods and numerical models |author=John Norbury |isbn=052180681X |year=2002 |publisher=Cambridge University Press |url=http://books.google.com/books?id=CRD6VONGtUkC&pg=PA35 |pages=p. 35 ''ff'' |chapter=§6.3 Further geometric and Coriolis approximations}}
:<math> \tbinom {c}{s}_L \ ; \ \ c_R,\ s_R \ , </math>
:<math> \tbinom {t}{b}_L \ ; \ \ t_R,\ b_R \ . </math>
{| class="wikitable" style="margin: 0 auto; text-align:center"
|+'''Right- and left-handed quarks'''
! Symbol
! Electric charge, ''Q''
! Weak isospin, (''I<sub>W</sub>, I<sub>W3</sub>'')
! Weak hypercharge, (''Y<sub>W</sub>'')
|-
| ''u<sub>L</sub>, c<sub>L</sub>, t<sub>L</sub>''
| +2/3
| (1/2, +1/2)
| +1/3
|-
| ''d<sub>L</sub>, s<sub>L</sub>, b<sub>L</sub>''
| −1/3
| (1/2, −1/2)
| +1/3
|-
| ''u<sub>R</sub>, c<sub>R</sub>, t<sub>R</sub>''
| +2/3
| 0
| +4/3
|-
| ''d<sub>R</sub>, s<sub>R</sub>, b<sub>R</sub>''
| −1/3
| 0
| −2/3
|-
|}


</ref>


By setting ''v<sub>n</sub>'' = 0, it can be seen immediately that (for positive φ and ω) a movement due east results in an acceleration due south. Similarly, setting ''v<sub>e</sub>'' = 0, it is seen that a movement due north results in an acceleration due east. In general, observed horizontally, looking along the direction of the movement causing the acceleration, the acceleration always is turned 90° to the right and of the same size regardless of the horizontal orientation. That is:<ref name=Canterbury>{{Cite web|url = http://www.phys.canterbury.ac.nz/newsletter/2005/nl20051202.pdf|author = David Morin, Eric Zaslow, Elizabeth Haley, John Goldne, and Natan Salwen|title = Limerick – May the Force Be With You|work = Weekly Newsletter Volume 22, No 47|publisher = Department of Physics and Astronomy, University of Canterbury|date = 2 December 2005|accessdate = 2009-01-01}}</ref><ref name=Morin>{{Cite book|author=David Morin |url=http://books.google.com/?id=Ni6CD7K2X4MC&pg=PA466&dq=Coriolis+carousel |title=Introduction to classical mechanics: with problems and solutions |page= 466 |isbn= 0521876222 |year=2008 |publisher=Cambridge University Press}}</ref>
{{Reflist}}
 
{{Quote
|On a merry-go-round in the night<br>
Coriolis was shaken with fright<br>
Despite how he walked<br>
'Twas like he was stalked<br>
By some fiend always pushing him right |David Morin, Eric Zaslow, E'beth Haley, John Golden, and Nathan Salwen}}
 
As a different case, consider equatorial motion setting φ = 0°. In this case, '''Ω''' is parallel to the North or ''n''-axis, and:
 
:<math>\boldsymbol{ \Omega} = \omega \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}\ ,</math> &nbsp; &nbsp; <math>\boldsymbol{ v} = \begin{pmatrix} v_e \\ v_n \\ v_u \end{pmatrix}\ ,</math>&nbsp;&nbsp;<math>\boldsymbol{ a}_C =-2\boldsymbol{\Omega \times v}= 2\,\omega\, \begin{pmatrix}-v_u \\0 \\ v_e \end{pmatrix}\ .</math>
 
Accordingly, an eastward motion (that is, in the same direction as the rotation of the sphere) provides an upward acceleration known as the [[Eötvös effect]],<ref name=Talwani>
 
The Eötvös effect must be corrected for in determining the effects of gravity aboard ship. See {{cite book |author= Manik Talwani |url=http://books.google.com/books?id=FRrZYTel0DEC&pg=PA46 |pages=p. 46 |chapter=Gravity measurements aboard surface ships: Eötvös effect |title=Gravity anomalies: unsurveyed areas |publisher=American Geophysical Union |year=1906 |editor= Hyman Orlin, ed.}}
 
</ref> and an upward motion produces an acceleration due west.
 
==Notes==
<references/>
 
Contributed by myself in June 2008, for example, [http://en.wikipedia.org/w/index.php?title=Coriolis_effect&diff=218224145&oldid=218221895 here] [http://en.wikipedia.org/w/index.php?title=Coriolis_effect&diff=218199099&oldid=218197139 here], [http://en.wikipedia.org/w/index.php?title=Coriolis_effect&diff=219110044&oldid=219105420 added Limerick]
 
 
http://books.google.com/books?id=-3H5V0LGBOgC&pg=PA122&dq=Foucault+pendulum&hl=en&ei=CV1gTenZOpGisQO9ruzNCA&sa=X&oi=book_result&ct=result&resnum=9&ved=0CGQQ6AEwCA#v=onepage&q=Foucault%20pendulum&f=false
 
http://books.google.com/books?id=NAo7yv7Jmq0C&pg=PA22&dq=Foucault+pendulum&hl=en&ei=VopgTdmBCoK4sQP6p-ncCA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCoQ6AEwADgK#v=onepage&q=Foucault%20pendulum&f=false
 
http://books.google.com/books?id=NAo7yv7Jmq0C&pg=PA22&dq=Foucault+pendulum&hl=en&ei=VYVgTcujHoOusAO0vOXNCA&sa=X&oi=book_result&ct=result&resnum=1&ved=0CCoQ6AEwADgK#v=onepage&q=Foucault%20pendulum&f=false
 
 
http://books.google.com/books?id=hrBe52GPHrYC&pg=PA351&dq=Foucault+pendulum&hl=en&ei=VYVgTcujHoOusAO0vOXNCA&sa=X&oi=book_result&ct=result&resnum=9&ved=0CFQQ6AEwCDgK#v=onepage&q=Foucault%20pendulum&f=false
 
http://books.google.com/books?id=GfCil84YTm4C&pg=PA116&dq=Foucault+pendulum&hl=en&ei=E4ZgTeaDGIa-sQP1zvDHCA&sa=X&oi=book_result&ct=result&resnum=8&ved=0CE0Q6AEwBzgU#v=onepage&q=Foucault%20pendulum&f=false
 
http://books.google.com/books?id=mms6MXH9CuoC&pg=PA22&dq=Foucault+pendulum&hl=en&ei=34ZgTeukEIuesQPMvPHYCA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CCsQ6AEwATge#v=onepage&q=Foucault%20pendulum&f=false
 
http://books.google.com/books?id=imrm2aOs9_8C&pg=PA90&dq=Foucault+pendulum&hl=en&ei=34ZgTeukEIuesQPMvPHYCA&sa=X&oi=book_result&ct=result&resnum=7&ved=0CEQQ6AEwBjge#v=onepage&q=Foucault%20pendulum&f=false
 
[http://books.google.com/books?id=d3kqAAAAMAAJ&pg=PA160&dq=Foucault+pendulum&hl=en&ei=34ZgTeukEIuesQPMvPHYCA&sa=X&oi=book_result&ct=result&resnum=8&ved=0CEkQ6AEwBzge#v=onepage&q=Foucault%20pendulum&f=false Maxwell]
 
http://books.google.com/books?id=wr2QOBqOBakC&pg=PA184&dq=Foucault+pendulum&hl=en&ei=U4hgTd-9Foa6sQP3lt3ACA&sa=X&oi=book_result&ct=result&resnum=2&ved=0CDAQ6AEwATgy#v=onepage&q=Foucault%20pendulum&f=false
 
[http://books.google.com/books?id=erkWAAAAYAAJ&pg=PA241&dq=Foucault+pendulum&hl=en&ei=CV1gTenZOpGisQO9ruzNCA&sa=X&oi=book_result&ct=result&resnum=6&ved=0CFEQ6AEwBQ#v=onepage&q=Foucault%20pendulum&f=false Practical matters]
 
http://books.google.com/books?id=sSPLspTUYEEC&pg=PA73&dq=Foucault+pendulum&hl=en&ei=U4hgTd-9Foa6sQP3lt3ACA&sa=X&oi=book_result&ct=result&resnum=4&ved=0CDsQ6AEwAzgy#v=onepage&q=Foucault%20pendulum&f=false
 
http://books.google.com/books?id=1J2hzvX2Xh8C&pg=PA272&dq=Foucault+pendulum&hl=en&ei=D4lgTdrSGIi6sQPrsunYCA&sa=X&oi=book_result&ct=result&resnum=3&ved=0CDIQ6AEwAjg8#v=onepage&q=Foucault%20pendulum&f=false
 
==References==
<references/>

Latest revision as of 03:07, 22 November 2023


The account of this former contributor was not re-activated after the server upgrade of March 2022.


Quarks

The quarks that may engage one another in reactions are determined by the Cabbibo-Kobayashi-Maskawa matrix:Morii

The quarks can be arranged to exhibit right- and left-handedness, subscripts L and R, to resemble the leptons. The right-handed quarks do not couple to the weak interaction, and are labeled with subscript R. The left-handed quarks corresponding to these right-handed quarks are mixtures of quarks. Thus, the up and down quarks are assembled as:

The other generations are arranged similarly:

Right- and left-handed quarks
Symbol Electric charge, Q Weak isospin, (IW, IW3) Weak hypercharge, (YW)
uL, cL, tL +2/3 (1/2, +1/2) +1/3
dL, sL, bL −1/3 (1/2, −1/2) +1/3
uR, cR, tR +2/3 0 +4/3
dR, sR, bR −1/3 0 −2/3