Alexandrium tamarense: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Ciro Monaco Jr.
mNo edit summary
 
(74 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{EZarticle-closed-auto‎}}
{{subpages}}
{{Taxobox
| color = pink
| name = Alexandrium tamarense
| image = Alexandrium_tamarense2.gif
| regnum = Eukaryota
| phylum = Alveolata
| classis = Dinophyceae
| ordo =  Gonyaulacales
| familia = Gonyaulacaceae
| genus =  Alexandrium
| species = tamarense
| binomial = ''Alexandrium tamarense''
| binomial_authority = 
}}
[[Image:Alexandrium_tamarense.jpg|right]]
''Picture courtesy of USGS Woods Hole Science Center''
Synonyms: ''Gonyaulax tamarensis'' Lebour 1925 , ''G. excavata'' (Braarud) Balech 1971 ''Protogonyaulax tamarensis'' (Lebour) F. J. R. Taylor 1979


==Classification==
==Description and significance==
''Alexandrium tamarense'' is a single-celled, [[phototrophic]] [[dinoflagellate]] found in coastal marine [[environments]] throughout the world and is associated with [[algal blooms]] that result in the phenomenon known as [[red tides]] (pictured below).


[[Image:Alexandrium_tamarense.jpg]]
[[Image:260px-La-Jolla-Red-Tide_780.jpg]]
[[Image:Alexandrium_tamarense2.gif]]


At only 25-46 micrometers in length per cell ''A. tamarense'' is microscopic in size, often brown in color and somewhat spherical in shape.


===Higher order taxa===
The algal blooms caused by A. tamarense often result in millions of these cells per liter of seawater. Each of these cells produces a [[neurotoxin]] that is highly toxic to inhabitants such as fish and shellfish, and can be passed through the food chain to other organisms such as marine mammals, birds, and humans.<ref>[http://www.tpwd.state.tx.us/landwater/water/environconcerns/hab/redtide/faq.phtml]</ref>


Eukaryota; Alveolata; Dinophyceae; Gonyaulacales; Gonyaulacaceae
==Genome structure==
There are many different Alexandrium species and DNA sequencing is the best way to distinguish between them.


Domain; Phylum; Class; Order; family [Others may be used. Use [http://www.tolweb.org/tree/ Tree of Life] link to find]
Like other dinoflagellates, ''Alexandrium tamarense'' consists of large amounts of DNA compared to other eukaryotic organisms. It also lacks nucleosomes. It consists of 144 chromosomes which are condensed in the nucleus until DNA replication. A total of 11,103 nucleotides [218 nucleotide core and 10,885 expressed sequence tags (ESTs)] have been sequenced.<ref>[http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1173104 Jeremiah D Hackett, Todd E Scheetz, Hwan Su Yoon, Marcelo B Soares, Maria F Bonaldo, Thomas L Casavant, and Debashish Bhattacharya corresponding author, Department of Biological Sciences and Roy J. Carver Center for Comparative Genomics, University of Iowa, Iowa City, IA 52242, USA]</ref>


===Species===
It is still not clear which genes play a role in toxin production.


''Alexandrium tamarense''
==Cell structure and metabolism==
Like other dinoflagellate species, ''A. tamarense'' is photoautotrophic meaning it manufactures its own food by using energy is obtains from sunlight. It is considered a primary producer and is a source of food for many other organisms. It is a also motile organism, having two flagella which it uses to propel itself through water.<ref>[http://www.assurecontrols.com/info-dinoflagellates.htm]</ref>


Synonyms: ''Gonyaulax tamarensis'' Lebour 1925 , ''G. excavata'' (Braarud) Balech 1971 ''Protogonyaulax tamarensis'' (Lebour) F. J. R. Taylor 1979
''A. tamarense'' is considered "armored" because it is surrounded by a layer of cellulose that form plates known as thecae.


==Description and significance==
''A. tamarense'' is very similar morphologically to other species in the same genus, however it can be distinguished by the presence of a ventral pore on the 1' plate, and the shape and size of its cells and thecal plates.


''Alexandrium tamarense'' is a single-celled dinoflagellate found primarily in coastal marine environments and is commonly known as the culprit that causes the algal blooms called red tides. It is considered a photoautotroph and contains brown chloroplasts, is 25-46 micrometers in length,  
''A. tamarense'' reproduces asexually by binary fission, however it can also reproduce sexually with anisogamous mating types.
During sexual reproduction, gametes fuse producing a planozygote which then converts into a resting cyst until environmental conditions are sufficient for germination. Life cycle stages include motile vegetative cells, haploid gametes, diploid zygotes, resting cysts, and temporary cysts.<ref>[http://microbewiki.kenyon.edu/index.php/Alexandrium]</ref>


Like other dinoflagellate species, ''A. tamarense'' propels itself through water using two flagella in a whip-like fashion. It is also considered "armored" because it is surrounded by a layer of cellulose that form plates known as thecae.
==Ecology==
[[Image:fishkill3.jpg|thumb|250px|Fish kill due to toxins produced by ''A. tamarense''<br> <small><small>Photo courtesy of Texas Parks and Wildlife Department</small></small>]]
Many dinoflagellates provide a food source for various organisms such as fish and shellfish that feed on primary producers. Some like ''Alexandrium tamarense'' are toxic, however, and have devastating effects on the environment and its inhabitants.  


While some organisms are unaffected by the toxins produced by ''A. tamarense'', these toxins can accumulate to extremely high levels in the organisms and can be very dangerous to higher organisms that consume them. Consumption of infected organisms can lead to many different illnesses. Paralytic Shellfish toxins (PST) are the primary cause of illness by ''A. tamarense''.


Describe the appearance, habitat, etc. of the organism, and why it is important enough to have its genome sequenced.  Describe how and where it was isolated.
Fish that affected by this illness and also attack the central nervous system, fish are no longer able to breathe in these environments and this often leads to fish kills (pictured right)


==Genome structure==
''Alexandrium tamarense'' is known for its ability to adapt quickly to different levels of nitrogen, making it more likely to survive in a constantly changing environment.
Describe the size and content of the genome.  How many chromosomes?  Circular or linear?  Other interesting features?  What is known about its sequence?
Does it have any plasmids?  Are they important to the organism's lifestyle?


==Cell structure and metabolism==
==Pathology==
Not all strains of ''Alexandrium tamarense'' are toxic. Different strains are often found in the same algal blooms caused by this species.<ref>[http://www.nmnh.si.edu/botany/projects/dinoflag/Taxa/Atamarense.htm]</ref>


Describe any interesting features and/or cell structures; how it gains energy; what important molecules it produces.
However, some strains of ''Alexandrium tamarense'' produce very potent neurotoxins known as paralytic shellfish toxins (PSTs). These toxins, which include gonyautoxins, neosaxitoxin and saxitoxin, affect fish, marine mammals, birds, and humans.<ref>[http://www.publicaffairs.noaa.gov/releases2004/oct04/noaa04-r999-58.html]</ref>


==Ecology==
Many deaths have been reported from the consumption of shellfish infected with these toxins.<ref>[http://www.publicaffairs.noaa.gov/releases2004/oct04/noaa04-r999-48.html]</ref>
Describe any interactions with other organisms (included eukaryotes), contributions to the environment, effect on environment, etc.


==Pathology==
Resting cysts can harbour PSP toxins, it was been demonstrated that cysts were more toxic than their motile stage. Humans, other mammals, fish and birds can be affected. Please consult original reference for further details. Harmful species http://www.algaebase.org/search/species/detail/?species_id=40299<ref>[http://www.nmnh.si.edu/botany/projects/dinoflag/Taxa/Atamarense.htm]</ref>
How does this organism cause disease?  Human, animal, plant hosts? Virulence factors, as well as patient symptoms.


==Application to Biotechnology==
==Application to Biotechnology==
Does this organism produce any useful compounds or enzymes?  What are they and how are they used?
While it is unclear whether toxins produced by ''A. tamarense'' provide any health benefits to humans, toxins created by similar dinoflagellates have already shown some benefits. An example of this is Gonyautoxin, a paralyzing phototoxin which aids in the healing of anal fissures.


==Current Research==
==Current Research==
A recent increase in harmful algal blooms produced by ''A. tamarense'' and similar species have caused concern for fisheries around the world.


Enter summaries of the most recent research here--at least three required
Areas along the coast of Maine have had outbreaks year after year prompting a five year project which is currently underway at Woods Hole Institute's Anderson Laboratory. This project is focused on the abundance, distribution, and motility of ''A. tamarense'' in the region. (http://www.whoi.edu/redtide/labweb/projects.html)<ref>[http://woodshole.er.usgs.gov/operations/modeling/wgulf/wgulf.html Don Anderson WHOI, Brad Butman USGS, Peter Franks SIO, Rocky Geyer WHOI, Ted Loder UNH, Rich Signell USGS, Bruce Keafer WHOI, Derek Fong WHOI, "''Toxic "Red Tide" Populations in the Western Gulf of Maine: Sources, Transport, and Nutrient Environment]</ref>


==References==
At the Hong Kong University of Science and Technology, scientists tried to determine the effects of ''A. tamarense'' on energy budgets and growth of two marine bivalves, the Manila clam (Ruditapes philippinarum) and the green-lipped mussel (Perna viridis). They found that scope of growth and absorption efficiency decreased when these bivalves were exposed to PSP.(http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V7H-44PWXYG-2&_user=699469&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000039278&_version=1&_urlVersion=0&_userid=699469&md5=e22cc9ea0a95b7c463337a6ff596c71e)<ref>[http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V7H-44PWXYG-2&_user=699469&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000039278&_version=1&_urlVersion=0&_userid=699469&md5=e22cc9ea0a95b7c463337a6ff596c71e Effects of toxic dinoflagellate Alexandrium tamarense on the energy budgets and growth of two marine bivalves, Siu-ChungLi, Wen-Xiong Wang,and Dennis P. H. Hsieh, Department of Biology, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Hong Kong, People's Republic of China]</ref>


[http://woodshole.er.usgs.gov/operations/modeling/wgulf/wgulf.html Don Anderson WHOI, [email protected]
At the University of Iowa, scientists were able to sequence the most extensive collection of ESTs for ''A. tamarense.'' This will certainly help future research in understanding "the unique and complex cell biology of these organisms and for potentially identifying the genes involved in toxin production." (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1173104)
Brad Butman USGS, [email protected] Peter Franks SIO, [email protected] Rocky Geyer WHOI, [email protected] Ted Loder UNH, [email protected] Rich Signell USGS, [email protected] Bruce Keafer WHOI, [email protected] Derek Fong WHOI, [email protected].edu "''Toxic "Red Tide" Populations in the Western Gulf of Maine: Sources, Transport, and Nutrient Environment]


[Sample reference] [http://ijs.sgmjournals.org/cgi/reprint/50/2/489 Takai, K., Sugai, A., Itoh, T., and Horikoshi, K. "''Palaeococcus ferrophilus'' gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney". ''International Journal of Systematic and Evolutionary Microbiology''. 2000. Volume 50. p. 489-500.]
==References==
 
{{reflist|2}}[[Category:Suggestion Bot Tag]]
[http://en.citizendium.org/wiki/Main_Page | Citizendium]

Latest revision as of 11:00, 8 July 2024

This article is developing and not approved.
Main Article
Discussion
Related Articles  [?]
Bibliography  [?]
External Links  [?]
Citable Version  [?]
 
This editable Main Article is under development and subject to a disclaimer.
Alexandrium tamarense
Alexandrium tamarense2.gif
Scientific classification
Kingdom: Eukaryota
Phylum: Alveolata
Class: Dinophyceae
Order: Gonyaulacales
Family: Gonyaulacaceae
Genus: Alexandrium
Species: tamarense
Binomial name
Alexandrium tamarense
Alexandrium tamarense.jpg

Picture courtesy of USGS Woods Hole Science Center Synonyms: Gonyaulax tamarensis Lebour 1925 , G. excavata (Braarud) Balech 1971 Protogonyaulax tamarensis (Lebour) F. J. R. Taylor 1979

Description and significance

Alexandrium tamarense is a single-celled, phototrophic dinoflagellate found in coastal marine environments throughout the world and is associated with algal blooms that result in the phenomenon known as red tides (pictured below).

260px-La-Jolla-Red-Tide 780.jpg

At only 25-46 micrometers in length per cell A. tamarense is microscopic in size, often brown in color and somewhat spherical in shape.

The algal blooms caused by A. tamarense often result in millions of these cells per liter of seawater. Each of these cells produces a neurotoxin that is highly toxic to inhabitants such as fish and shellfish, and can be passed through the food chain to other organisms such as marine mammals, birds, and humans.[1]

Genome structure

There are many different Alexandrium species and DNA sequencing is the best way to distinguish between them.

Like other dinoflagellates, Alexandrium tamarense consists of large amounts of DNA compared to other eukaryotic organisms. It also lacks nucleosomes. It consists of 144 chromosomes which are condensed in the nucleus until DNA replication. A total of 11,103 nucleotides [218 nucleotide core and 10,885 expressed sequence tags (ESTs)] have been sequenced.[2]

It is still not clear which genes play a role in toxin production.

Cell structure and metabolism

Like other dinoflagellate species, A. tamarense is photoautotrophic meaning it manufactures its own food by using energy is obtains from sunlight. It is considered a primary producer and is a source of food for many other organisms. It is a also motile organism, having two flagella which it uses to propel itself through water.[3]

A. tamarense is considered "armored" because it is surrounded by a layer of cellulose that form plates known as thecae.

A. tamarense is very similar morphologically to other species in the same genus, however it can be distinguished by the presence of a ventral pore on the 1' plate, and the shape and size of its cells and thecal plates.

A. tamarense reproduces asexually by binary fission, however it can also reproduce sexually with anisogamous mating types. During sexual reproduction, gametes fuse producing a planozygote which then converts into a resting cyst until environmental conditions are sufficient for germination. Life cycle stages include motile vegetative cells, haploid gametes, diploid zygotes, resting cysts, and temporary cysts.[4]

Ecology

Fish kill due to toxins produced by A. tamarense
Photo courtesy of Texas Parks and Wildlife Department

Many dinoflagellates provide a food source for various organisms such as fish and shellfish that feed on primary producers. Some like Alexandrium tamarense are toxic, however, and have devastating effects on the environment and its inhabitants.

While some organisms are unaffected by the toxins produced by A. tamarense, these toxins can accumulate to extremely high levels in the organisms and can be very dangerous to higher organisms that consume them. Consumption of infected organisms can lead to many different illnesses. Paralytic Shellfish toxins (PST) are the primary cause of illness by A. tamarense.

Fish that affected by this illness and also attack the central nervous system, fish are no longer able to breathe in these environments and this often leads to fish kills (pictured right)

Alexandrium tamarense is known for its ability to adapt quickly to different levels of nitrogen, making it more likely to survive in a constantly changing environment.

Pathology

Not all strains of Alexandrium tamarense are toxic. Different strains are often found in the same algal blooms caused by this species.[5]

However, some strains of Alexandrium tamarense produce very potent neurotoxins known as paralytic shellfish toxins (PSTs). These toxins, which include gonyautoxins, neosaxitoxin and saxitoxin, affect fish, marine mammals, birds, and humans.[6]

Many deaths have been reported from the consumption of shellfish infected with these toxins.[7]

Resting cysts can harbour PSP toxins, it was been demonstrated that cysts were more toxic than their motile stage. Humans, other mammals, fish and birds can be affected. Please consult original reference for further details. Harmful species http://www.algaebase.org/search/species/detail/?species_id=40299[8]

Application to Biotechnology

While it is unclear whether toxins produced by A. tamarense provide any health benefits to humans, toxins created by similar dinoflagellates have already shown some benefits. An example of this is Gonyautoxin, a paralyzing phototoxin which aids in the healing of anal fissures.

Current Research

A recent increase in harmful algal blooms produced by A. tamarense and similar species have caused concern for fisheries around the world.

Areas along the coast of Maine have had outbreaks year after year prompting a five year project which is currently underway at Woods Hole Institute's Anderson Laboratory. This project is focused on the abundance, distribution, and motility of A. tamarense in the region. (http://www.whoi.edu/redtide/labweb/projects.html)[9]

At the Hong Kong University of Science and Technology, scientists tried to determine the effects of A. tamarense on energy budgets and growth of two marine bivalves, the Manila clam (Ruditapes philippinarum) and the green-lipped mussel (Perna viridis). They found that scope of growth and absorption efficiency decreased when these bivalves were exposed to PSP.(http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V7H-44PWXYG-2&_user=699469&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000039278&_version=1&_urlVersion=0&_userid=699469&md5=e22cc9ea0a95b7c463337a6ff596c71e)[10]

At the University of Iowa, scientists were able to sequence the most extensive collection of ESTs for A. tamarense. This will certainly help future research in understanding "the unique and complex cell biology of these organisms and for potentially identifying the genes involved in toxin production." (http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1173104)

References