Square root of two: Difference between revisions
imported>Sébastien Moulin m (syntax error) |
imported>Sébastien Moulin m (typo) |
||
Line 20: | Line 20: | ||
[[Category:Mathematics Workgroup]] | [[Category:Mathematics Workgroup]] | ||
[[Category: | [[Category:CZ_Live]] |
Revision as of 01:28, 29 March 2007
The square root of two (), approximately 1.4142135623730950488016887242097, is a typical example of an irrational number.
In Right Triangles
The square root of two plays an important role in right triangles in that a unit right triangle (where both legs are equal to 1), has a hypotenuse of . Thus,
Proof of Irrationality
There exists a simple proof by contradiction showing that is irrational:
Assume that there exists two numbers, , such that and and represent the smallest such integers (i.e., they are mutually prime).
Therefore, and ,
Thus, represents an even number
If we take the integer, , such that , and insert it back into our previous equation, we find that
Through simplification, we find that , and then that, ,
Since is an integer, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} must also be even. However, if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} are both even, they share a common factor of 2, making them not mutually prime. And that is a contradiction.