User:Boris Tsirelson/Sandbox1: Difference between revisions

From Citizendium
Jump to navigation Jump to search
imported>Boris Tsirelson
No edit summary
imported>Boris Tsirelson
No edit summary
Line 1: Line 1:
Classical physics obeys the counterfactual definiteness and therefore negates entanglement. Classical apparata A, B cannot help Alice and Bob to always win (that is, agree on the intersection). What about quantum apparata? The answer is quite unexpected.
A mathematical property is said to be a '''Schröder–Bernstein''' (or Cantor–Schröder–Bernstein, or Cantor–Bernstein) '''property''' if it is formulated in the following form.
:If ''X'' is similar to a part of ''Y'' and also ''Y'' is similar to a part of ''X'' then ''X'' and ''Y'' are similar (to each other).
In order to be specific one should decide
* what kind of mathematical objects are ''X'' and ''Y'',
* what is meant by "a part",
* what is meant by "similar".


First, quantum apparata cannot ensure that Alice and Bob win always. Moreover, the winning probability does not exceed
In the [[Schröder-Bernstein theorem|classical (Cantor-)Schröder–Bernstein theorem]],
:<math> \frac{ 2 + \sqrt 2 }{ 4 } = 0.853\dots </math>
* objects are [[Set (mathematics)|sets]] (maybe infinite),
no matter which quantum apparata are used.
* "a part" is interpreted as a [[subset]],
* "similar" is interpreted as [[Bijective function#Bijections and the concept of cardinality|equinumerous]].


Second, there exist quantum apparata that ensure a winning probability higher than 3/4 = 0.75. This is a manifestation of entanglement, since under the three classical assumptions (counterfactual definiteness, local causality and no-conspiracy) the winning probability cannot exceed 3/4 (the classical bound). But moreover, ideal quantum apparata can reach the winning probability <math>(2+\sqrt2)/4</math> (the quantum bound), and non-ideal quantum apparata can get arbitrarily close to this bound.
Not all statements of this form are true. For example, assume that
* objects are [[triangle]]s,
* "a part" means a triangle inside the given triangle,
* "similar" is interpreted as usual in elementary geometry: triangles related by a dilation (in other words, "triangles with the same shape up to a scale factor", or equivalently "triangles with the same angles").
Then the statement fails badly: every triangle ''X'' evidently is similar to some triangle inside ''Y'', and the other way round; however, ''X'' and ''Y'' need no be similar.


Third, a modification of the game, called "magic square game", makes it possible to win always. To this end we replace 2x2 matrices with 3x3 matrices, still of numbers 0 and 1 only, with the following conditions:
A Schröder–Bernstein property is a joint property of
* the parity of each row is even,
* a class of objects,
* the parity of each column is odd.
* a binary relation "be a part of",
The classical bound is equal to 8/9; the quantum bound is equal to 1.
* a binary relation "be similar".
Instead of the relation "be a part of" one may use a binary relation "be embeddable into" interpreted as "be similar to some part of". Then a Schröder–Bernstein property takes the following form.
:If ''X'' is embeddable into ''Y'' and ''Y'' is embeddable into ''X'' then ''X'' and ''Y'' are similar.
The same in the language of [[category theory]]:
:If objects ''X'', ''Y'' are such that ''X'' injects into ''Y'' (more formally, there exists a monomorphism from ''X'' to ''Y'') and also ''Y'' injects into ''X'' then ''X'' and ''Y'' are isomorphic (more formally, there exists an isomorphism from ''X'' to ''Y'').
 
A problem of deciding, whether a Schröder–Bernstein property (for a given class and two relations) holds or not, is called a Schröder–Bernstein problem. A theorem that states a Schröder–Bernstein property (for a given class and two relations), thus solving the Schröder–Bernstein problem in the affirmative, is called a Schröder–Bernstein theorem (for the given class and two relations), not to be confused with the classical (Cantor–)Schröder–Bernstein theorem mentioned above.
 
The Schröder–Bernstein theorem for [[measurable space]]s<ref>{{harvnb|Srivastava|1998}}, see Proposition 3.3.6 (on page 96), and the first paragraph of Section 3.3 (on page 94).</ref> states the Schröder–Bernstein property for the following case:
* objects are measurable spaces,
* "a part" is interpreted as a measurable subset treated as a measurable space,
* "similar" is interpreted as isomorphic.
It has a noncommutative counterpart, the Schröder–Bernstein theorem for operator algebras.
 
[[Banach space]]s violate the Schröder–Bernstein property;<ref name=Ca>{{harvnb|Casazza|1989}}</ref><ref name=Go>{{harvnb|Gowers|1996}}</ref> here
* objects are Banach spaces,
* "a part" is interpreted as a subspace<ref name="Ca" /> or a complemented subspace<ref name=Go />,
* "similar" is interpreted as linearly homeomorphic.
 
Many other Schröder–Bernstein problems related to various [[space (mathematics)|spaces]] and algebraic structures (groups, rings, fields etc) are discussed by informal groups of mathematicians (see the [[Schröder–Bernstein property/External Links|external links page]]).
 
==Notes==
{{reflist}}
 
==References==
 
{{Citation
| last = Srivastava
| first = S.M.
| title = A Course on Borel Sets
| year = 1998
| publisher = Springer
| isbn = 0387984127
}}.
 
{{Citation
| last = Gowers
| first = W.T.
| year = 1996
| title = A solution to the Schroeder-Bernstein problem for Banach spaces
| journal = Bull. London Math. Soc.
| volume = 28
| pages = 297–304
| url = http://blms.oxfordjournals.org/content/28/3/297
}}.
 
{{Citation
| last = Casazza
| first = P.G.
| year = 1989
| title = The Schroeder-Bernstein property for Banach spaces
| journal = Contemp. Math.
| volume = 85
| pages = 61–78
| url = http://www.ams.org/mathscinet-getitem?mr=983381
}}.

Revision as of 07:04, 28 September 2010

A mathematical property is said to be a Schröder–Bernstein (or Cantor–Schröder–Bernstein, or Cantor–Bernstein) property if it is formulated in the following form.

If X is similar to a part of Y and also Y is similar to a part of X then X and Y are similar (to each other).

In order to be specific one should decide

  • what kind of mathematical objects are X and Y,
  • what is meant by "a part",
  • what is meant by "similar".

In the classical (Cantor-)Schröder–Bernstein theorem,

  • objects are sets (maybe infinite),
  • "a part" is interpreted as a subset,
  • "similar" is interpreted as equinumerous.

Not all statements of this form are true. For example, assume that

  • objects are triangles,
  • "a part" means a triangle inside the given triangle,
  • "similar" is interpreted as usual in elementary geometry: triangles related by a dilation (in other words, "triangles with the same shape up to a scale factor", or equivalently "triangles with the same angles").

Then the statement fails badly: every triangle X evidently is similar to some triangle inside Y, and the other way round; however, X and Y need no be similar.

A Schröder–Bernstein property is a joint property of

  • a class of objects,
  • a binary relation "be a part of",
  • a binary relation "be similar".

Instead of the relation "be a part of" one may use a binary relation "be embeddable into" interpreted as "be similar to some part of". Then a Schröder–Bernstein property takes the following form.

If X is embeddable into Y and Y is embeddable into X then X and Y are similar.

The same in the language of category theory:

If objects X, Y are such that X injects into Y (more formally, there exists a monomorphism from X to Y) and also Y injects into X then X and Y are isomorphic (more formally, there exists an isomorphism from X to Y).

A problem of deciding, whether a Schröder–Bernstein property (for a given class and two relations) holds or not, is called a Schröder–Bernstein problem. A theorem that states a Schröder–Bernstein property (for a given class and two relations), thus solving the Schröder–Bernstein problem in the affirmative, is called a Schröder–Bernstein theorem (for the given class and two relations), not to be confused with the classical (Cantor–)Schröder–Bernstein theorem mentioned above.

The Schröder–Bernstein theorem for measurable spaces[1] states the Schröder–Bernstein property for the following case:

  • objects are measurable spaces,
  • "a part" is interpreted as a measurable subset treated as a measurable space,
  • "similar" is interpreted as isomorphic.

It has a noncommutative counterpart, the Schröder–Bernstein theorem for operator algebras.

Banach spaces violate the Schröder–Bernstein property;[2][3] here

  • objects are Banach spaces,
  • "a part" is interpreted as a subspace[2] or a complemented subspace[3],
  • "similar" is interpreted as linearly homeomorphic.

Many other Schröder–Bernstein problems related to various spaces and algebraic structures (groups, rings, fields etc) are discussed by informal groups of mathematicians (see the external links page).

Notes

  1. Srivastava 1998, see Proposition 3.3.6 (on page 96), and the first paragraph of Section 3.3 (on page 94).
  2. 2.0 2.1 Casazza 1989
  3. 3.0 3.1 Gowers 1996

References

Srivastava, S.M. (1998), A Course on Borel Sets, Springer, ISBN 0387984127.

Gowers, W.T. (1996), "A solution to the Schroeder-Bernstein problem for Banach spaces", Bull. London Math. Soc. 28: 297–304.

Casazza, P.G. (1989), "The Schroeder-Bernstein property for Banach spaces", Contemp. Math. 85: 61–78.