Free will: Difference between revisions
imported>John R. Brews (→Summary: closer to text) |
imported>John R. Brews (→References: chapter 8) |
||
Line 200: | Line 200: | ||
<ref name=Stanovitch> | <ref name=Stanovitch> | ||
{{cite book |title=The Robot's Rebellion: Finding Meaning in the Age of Darwin |author=Keith E. Stanovich |isbn=0226771253 |publisher=University of Chicago Press |year=2005 |url=http://books.google.com/books?id=VRsgtSBMh0YC&printsec=frontcover}} | {{cite book |title=The Robot's Rebellion: Finding Meaning in the Age of Darwin |author=Keith E. Stanovich |isbn=0226771253 |publisher=University of Chicago Press |year=2005 |url=http://books.google.com/books?id=VRsgtSBMh0YC&printsec=frontcover}} See in particular Chapter 8: Soul without mystery: Finding meaning in the age of Darwin, pp. 207 ''ff''. | ||
</ref> | </ref> | ||
Revision as of 09:55, 20 August 2012
Free will is the notion that human beings are able to choose between different courses of action in any given circumstance,[1] whereas its opposite, determinism, claims that all our mental states and actions are made necessary by preceding causes, and we are therefore not free at all, although we may have the illusion thereof. These diametric extremes, on the one hand we always are in complete control, and on the other that we never are in control, unnecessarily restrict our options, an example of false dichotomy,[2] referred to specifically in this instance as naïve dualism.[3] Reality lies somewhere else, as it is abundantly clear that our actions can be dictated by factors outside our control and outside our awareness,[4] but it is unclear that such factors are decisive in every instance or in the long run.
The controllable and uncontrollable aspects of decision making are logically separable using the following device:
"Philosophers who distinguish freedom of action and freedom of will do so because our success in carrying out our ends depends in part on factors wholly beyond our control. Furthermore, there are always external constraints on the range of options we can meaningfully try to undertake. As the presence or absence of these conditions and constraints are not (usually) our responsibility, it is plausible that the central loci of our responsibility are our choices, or “willings.” Timothy O'Connor, Free Will [5][Italics not in original.] |
The connection between will and action thereby is separated for further discussion. In particular, is there in nature anything that actually inhabits the domain of "will" so-defined, a domain beyond the reach of "external constraints"? A related distinction is that between brain and mind, with brain the physical matter where mental processes take place, and mind somehow (unclearly) related to consciousness and will.
All of us have subjectively experienced being torn between doing one thing or another –what we would like to do, what we think we should do, or what we think others would appreciate our doing, and so on. We might assume that the decision is up to us, that we are free to do one thing or another, and others may heap blame or praise on us assuming the same thing. This assumption is what is meant by free will –the belief that whatever we may have done in actual fact, could have been otherwise because we might have decided on another course of action, and that before taking the action we were free to choose between alternatives. The claim might be: "Consciousness has the ability to override its genetic (and other) instructions and to set its own independent course of action."[6]
At the same time, we realize that some aspects of the world work in ways that can be understood because there are law-like processes that can be deciphered, and that allow us to predict some future events based upon observations of past events. The principle operating here is that future events are governed by physical laws rooted in past events, and the notion that this kind of explanation applies to everything that happens is known as determinism. Some have argued that the probabilistic nature of quantum mechanics opens a door to a randomness in human behavior, which is foreign to human experience. Inasmuch as random atomic events are not under our control any more than predetermined events, determinism can be rewritten to include this randomness, for example, as follows: All our decisions are either implied by past events, or by random events, that in both cases do not involve us as agents, but which we simply witness.[7]
If the world is deterministic, our feeling that we are free to choose an action is simply an illusion. We have trouble believing all our actions are beyond our control, and that our sense of freedom is totally illusory, but we also have problems thinking that our actions are totally within our control. Although it is an exaggeration (at least at the moment) to think that science requires determinism,[8] it is apparent that "consciousness plays a far smaller role in human life than Western culture has tended to believe."[9]
This dilemma is what in philosophy is known as the problem of free will (or sometimes referred to by its flip-side as the dilemma of determinism), and it is a dilemma because it is difficult to decide how to assign responsibility for our actions.
Incompatibilism
One approach, of course, is simply to accept as a fact that human beings are not free, a position termed hard determinism or incompatibilism.[7] To accept this position is to accept that our actions are caused by things other than our will –that actions do not originate in volition (willing), but rather in forces that determine its disposition in one way or another, a view often associated with stoicism.[10] Hard determinism, however, insofar as it accepts a causal chain of events, means our present actions are determined in the past, and some consider that view to wholly destroy any notion of moral responsibility. From this stance, freedom is considered a necessary component of responsibility, for why should anyone be blamed or praised for actions that could not have been otherwise? Stoics, however, considered that an agent was responsible for thinking through their choices, even though the appearance of choice is illusory.[10] This curious situation led to much debate over the centuries, with Chrysippus (279 – 206 BC) attempting a way out of this apparent contradiction by separating external antecedant causes from the internal disposition receiving this cause, a solution adopted by many thinkers since that time in various formulations.[11]
Libertarianism
Others have argued that determinism is false, or that at the very least, human actions are a special case and stand outside the requirements of a deterministic universe.[7] In simple terms, freedom of thought is distinguished from freedom of action, and their connection is made a subject of study. By separating the rules of thought, one might be free to choose between alternatives, one might have causal powers.
Saint Augustine held this view, the capacity for metaphysical freedom.[12] Kant also subscribed to this view: besides nature and empirical knowledge, there is the realm of things in themselves accessible to thought and governed by different rules; a distinction between phenomena and noumena.[13]
In a kind of inverse form of Kant's approach, Pierre Duhem suggested that scientific theory was simply a device to facilitate economy of thought, and could not be considered to encompass "reality".[14] Thus, thought is a distillation of reality, and what goes on "in reality" is a much deeper and broader question than how we describe it. Similar to consciousness itself, scientific theory is a synopsis of some of what goes on, not the full text.
Compatibilism
An intermediate view has been to soften the requirements of what it means to be free. One accepts the fact that actions have causes, but argues that this does not mean we are not free.[7]
In the approach known as soft determinism, I am still free even though my character, common sense and so forth, strongly support a course of action, because they do not compel me to act in this way, nor preclude alternatives. Of course freedom understood in this way is not an arbitrary freedom. It is freedom in the sense that nothing stops me from doing otherwise, even though it is unlikely. Put in an extreme form: "A puppet is free as long as he loves his strings".[4]
What are the "strings" attached to our decisions? The questions of character, predisposition, programming and so on, are part of the field of behaviorism, where behavior modification, reinforcement, and so forth are studied.[15] A closely related field is cognitive psychology, the psychology of cognition, studying matters such as the processes involved in memorization and decision making.[16][17]
Complementarity
In quantum mechanics the notion of complementarity arises, that is, different aspects of a description that are mutually exclusive. Bohr (1922 winner of the Nobel Prize in physics) suggested complementarity is useful outside of quantum theory. In asking whether one can perform an action, one is both observer and subject, which is posited to be an untenable situation: one must adopt one or the other stance.[18][19] To quote Niels Bohr:[20]
"For instance, it is impossible, from our standpoint, to attach an unambiguous meaning to the view sometimes expressed that the probability of the occurrence of certain atomic processes in the body might be under the direct influence of the will. In fact, according to the generalized interpretation of the psycho-physical parallelism, the freedom of the will is to be considered as a feature of conscious life which corresponds to functions of the organism that not only evade a causal mechanical description but resist even a physical analysis carried to the extent required for an unambiguous application of the statistical laws of atomic mechanics. Without entering into metaphysical speculations, I may perhaps add that an analysis of the very concept of explanation would, naturally, begin and end with a renunciation as to explaining our own conscious activity."... |
"...On the contrary, the recognition of the limitation of mechanical concepts in atomic physics would rather seem suited to conciliate the apparently contrasting viewpoints of physiology and psychology. Indeed, the necessity of considering the interaction between the measuring instruments and the object under investigation in atomic mechanics exhibits a close analogy to the peculiar difficulties in psychological analysis arising from the fact that the mental content is invariably altered when the attention is concentrated on any special feature of it." |
These observations are echoed by experimentalists studying brain function:[21]
"...it is important to be clear about exactly what experience one wants one's subjects to introspect. Of course, explaining to subjects exactly what the experimenter wants them to experience can bring its own problems–...instructions to attend to a particular internally generated experience can easily alter both the timing and he content of that experience and even whether or not it is consciously experienced at all." Susan Pockett, The neuroscience of movement[21] |
Self-programming robots
Today robots can be made that adapt their responses to their environment through self-programming, so-called intelligent robots. Much of the description of these machines seems parallel to human behavior, although technology has still not reached sufficient complexity to make a strong case for the similairites.[22]
"Some people think that consciousness can arise only in organic, of flesh-and-blood beings. Others speculate that self-awareness might develop in any sufficiently complex network that is set up to operate like a brain...Could a conscious robot – a being created by humans and not by God – ever be said to have a soul? "[23] |
Is such a machine deterministic? We cannot predict the machine's exact behavior without a complete knowledge of its personal history with its environment, the reliability of its components, and its present state of programming, uncertainties in which limit us to probabilistic statements.
Groups of cooperating robots also are envisioned:
"The interaction of multiple behavioral robots can be regarded as a continuum between two diverse types of behavior. At one extreme, the behavior can regarded as being egoistic, where a robot is concerned purely with self directed behavior, e.g. energy conservation. At the other extreme their behavior can be regarded as being altruistic, e.g. when a group of robots need to work together to perform some common task."[24] |
One can conjecture that some such groups could evolve following a Darwinian scheme, not only an interest of engineers,[25] but a recurrent topic of science fiction.[26]
"The marvels accomplished by evolution inspired many researchers with the long term goal of automatically designing and even manufacturing complete robotics "lifeforms" with as little human intervention as possible." (Doncieux et al., §1.4.4 p. 12[25]) |
Addiction
Some light is cast upon the separation of freedom of action and freedom of will by the disorders of addiction. An addict has disconnected their will that identifies a desirable course of action from their ability to enforce that action. Brain imaging of addicts and non-addicts show differences in brain activity and can relate the process of addiction to a reprogramming of the brain's production of dopamine that can be reversed only with a very prolonged and multipronged therapy.[27]
"Most PET (Positron Emission Tomography) studies of drug addiction have concentrated on the brain dopamine (DA) system, since this is considered to be the neurotransmitter system through which most drugs of abuse exert their reinforcing effects. A reinforcer is operationally defined as an event that increases the probability of a subsequent response, and drugs of abuse are considered to be much stronger reinforcers than natural reinforcers (e.g. sex and food). The brain DA system also regulates motivation and drive for everyday activities. These imaging studies have revealed that acute and chronic drug consumption have different effects on proteins involved involved in DA synaptic transmission. ... chronic drug consumption results in marked decrease in DA activity which persists months after detoxification and which is associated with deregulation of frontal brain regions. " (Volkow et al.[27]) |
"One of the most consistent findings from imaging studies is that of abnormalities in the prefrontal cortex... The prefrontal cortex is involved in decision making and in inhibitory control... Thus its disruption could lead to inadequate decisions that favor immediate rewards over delayed but more favorable responses. It could also account for the impaired control over the intake of the drug even when the addicted subject expresses the desire to refrain from taking the drug. " (Volkow et al.[27]) |
Summary
The various notions of free will conflict, but involve many of the same elements. These matters have been argued for millenia, and their resolution may depend upon developing a better understanding of what actually goes on in the brain.[28]
"Although strong advances are being made in analyzing the dynamics of the limbic system and its centerpieces, the entorhinal cortex and the hippocampus, their self-organized spatial patterns, their precise intentional contents, and their mechanisms of formation in relation to intentional action are still unknown." (Walter J. Freeman, Consciousness, intentionality and causality[28]) |
In popular accounts of this subject, the same modern developments are used as new wine in old bottles. On one hand, we have K. E. Stanovitch's The Robot's Rebellion: Finding Meaning in the Age of Darwin, which advances the view that decisions are possible using "instrumental rationality" with goals "keyed to the life interest of the vehicle" to replace "gut" decisions.[29] On the other hand we have books like Sam Harris' Free Will,[4] and D.M. Wagener's The Illusion of Conscious Will,[30] that take the view that consciousness is completely illusory, and old-fashioned determinism is completely correct.
References
- ↑ Historically, "free will" has had a number of definitions, some tied to religious notions of being able to choose between "right" and "wrong". The definition here is that described as the "common notion" by evangelical thinker Gordon H. Clark (1961). Religion, reason, and revelation. Presbyterian and Reformed Pub. Co, pp. 202-203. “Free will has been defined as the ability under given circumstances, to choose either of two courses of action... Whatever motives or inclinations a man might have, or whatever inducements may be laid before him, that might seem to turn him in a given direction, he may at a moment disregard them all and do the opposite.”
- ↑ The offering of only a pair of contrary alternatives that do not exhaust the possibilities. See Sylvan Barnet, Hugo Bedau (2010). Critical Thinking, Reading, and Writing: A Brief Guide to Argument, 7th ed. Macmillan, p. 376. ISBN 0312601603.
- ↑ The term naïve dualism is used by John Monterosso, Barry Schwartz (July 27, 2012). Did your brain make you do it?. Gray Matter. New York Times. Retrieved on 2012-07-29.
- ↑ 4.0 4.1 4.2 Sam Harris (2012). Free Will. Simon and Schuster. ISBN 1451683405.
- ↑ O'Connor, Timothy (Oct 29, 2010). Edward N. Zalta, ed:Free Will. The Stanford Encyclopedia of Philosophy (Summer 2011 Edition).
- ↑ A paraphrase of a statement by Mihaly Csikszentmihalyi (1990). Flow: The psychology of optimal experience. Harper & Row, p. 24. ISBN 0060920432.
- ↑ 7.0 7.1 7.2 7.3 Mark Balaguer (2009). “Introduction”, Free Will As an Open Scientific Problem. MIT Press, pp. 1 ff. ISBN 0262013541.
- ↑ The view of scientific determinism goes back to Laplace: "We ought to regard the present state of the universe as the effect of its antecedent state". However, the necessary underlying assumption of complete knowledge by an observer, including exact knowledge of the observer themselves, is an extreme idealization that renders any such claim unverifiable. See John T Roberts (2006). “Determinism”, Sahotra Sarkar, Jessica Pfeifer, Justin Garson, eds: The Philosophy of Science: An Encyclopedia. N-Z, Indeks, Volume 1. Psychology Press, pp. 197 ff. ISBN 0415939275.
- ↑ Quote from Tor Nørretranders (1998). “Preface”, The user illusion: Cutting consciousness down to size, Jonathan Sydenham translation of Maerk verden 1991 ed. Penguin Books, p. ix. ISBN 00140230122.
- ↑ 10.0 10.1 Ricardo Salles (2005). The Stoics on Determinism and Compatibilism. Ashgate Publishing. ISBN 0754639762.
- ↑ Keimpe Algra (1999). “Chapter VI: The Chyrsippean notion of fate: soft determinism”, The Cambridge History of Hellenistic Philosophy. Cambridge University Press, p. 529. ISBN 0521250285.
- ↑ Saint Augustine, Bishop of Hippo (1993). “Introduction by translator”, On Free Choice Of The Will, Translation by Thomas Williams of Augustine's work of AD 391-395. Hackett Publishing, p. 12. ISBN 0872201880.
- ↑ Allen W Wood (1998). Patricia Kitcher, ed: Kant's Critique of Pure Reason: Critical Essays. Rowman & Littlefield, pp. 240 ff. ISBN 0847689174.
- ↑ Pierre Maurice Marie Duhem (1991). The Aim and Structure of Physical Theory. Princeton University Press, p. 21. ISBN 069102524X.
- ↑ BF Skinner (2011). About Behaviorism. Random House Digital, Inc. ISBN 0307797848.
- ↑ An historical outline of the evolution of cognitive psychology and its relation to behaviorism is found in E. Bruce Goldstein (2008). “Chapter 1: Introduction to Cognitive Psychology”, Cognitive Psychology: Connecting Mind, Research, and Everyday Experience, 2nd ed. Cengage Learning, pp. 1 ff. ISBN 0495095575.
- ↑ Robert J. Sternberg (2009). “Psychological antecedents of cognitive psychology”, Cognitive Psychology, 5th ed. Cengage Learning, pp. 5 ff. ISBN 049550629X.
- ↑ Andrew Whitaker (2006). Einstein, Bohr And the Quantum Dilemma: From Quantum Theory to Quantum Information, 2nd ed. Cambridge University Press, p. 191. ISBN 0521671027.
- ↑ For a discussion of a program to establish complementarity as speculated by Bohr, see Paul McEvoy (2001). Niels Bohr: Reflections on Subject and Object. MicroAnalytix, p. 323. ISBN 1930832001.
- ↑ Niels Bohr (April 1, 1933). "Light and Life". Nature: p. 457 ff. Full text on line at us.archive.org.
- ↑ 21.0 21.1 Susan Pockett (2009). “The neuroscience of movement”, Susan Pockett, WP Banks, Shaun Gallagher, eds: Does Consciousness Cause Behavior?. MIT Press, p. 19. ISBN 0262512572.
- ↑ Drew McDermott (2007). “Chapter 6: Artificial intelligence and consciousness”, Philip David Zelazo, Morris Moscovitch, Evan Thompson, eds: The Cambridge Handbook of Consciousness. Cambridge University Press, pp. 117 ff. ISBN 0521857430.
- ↑ Rebecca Stefoff (2007). Robots. Marshall Cavendish, p. 118. ISBN 0761426019.
- ↑ Kerstin Dautenhahn (2000). Human Cognition and Social Agent Technology. John Benjamins Publishing Company, p. 202. ISBN 9027251398.
- ↑ 25.0 25.1 This field is sometimes called Darwinian engineering or evolutionary robotics. See for example, Stéphane Doncieux, Jean-Baptiste Mouret, Nicolas Bredechte, Vincent Padois (2011). “Chapter 1: Evolutionary robotics: exploring new horizons”, Stéphane Doncieux, ed: New Horizons in Evolutionary Robotics: Extended Contributions from the 2009 EvoDeRob Workshop. Springer, pp. 3 ff. ISBN 3642182712.
- ↑ Barbara Creed (2009). “Intelligent machines and created life forms”, Darwin's Screens: Evolutionary Aesthetics, Time and Sexual Display in the Cinema. Academic Monographs, pp. 65 ff. ISBN 0522857094.
- ↑ 27.0 27.1 27.2 Nora D Volkow, Joanna S Fowler, and Gene-Jack Wang (2007). “The addicted human brain: insights from imaging studies”, Andrew R Marks and Ushma S Neill, eds: Science In Medicine: The JCI Textbook Of Molecular Medicine. Jones & Bartlett Learning, pp. 1061 ff. ISBN 0763750832.
- ↑ 28.0 28.1 Walter J Freeman (2009). “Consciousness, intentionality and causality”, Susan Pockett, WP Banks, Shaun Gallagher, eds: Does Consciousness Cause Behavior?. MIT Press, p. 88. ISBN 0262512572.
- ↑ Keith E. Stanovich (2005). The Robot's Rebellion: Finding Meaning in the Age of Darwin. University of Chicago Press. ISBN 0226771253. See in particular Chapter 8: Soul without mystery: Finding meaning in the age of Darwin, pp. 207 ff.
- ↑ Daniel M. Wegner (2003). The Illusion of Conscious Will. MIT Press. ISBN 0262731622.