IPsec

From Citizendium
Revision as of 08:02, 15 October 2008 by imported>Sandy Harris (→‎IPsec is a general mechanism for securing IP)
Jump to navigation Jump to search

IPsec is Internet Protocol Security; it is optional for IPv4, but all IPv6 implementations are required to include IPsec. Of course this does not mean all IPv6 systems will actually use it.

The basic idea is to provide security functions, authentication and encryption, at the IP (Internet Protocol) level. This requires a higher-level protocol (IKE) to set things up for the IP-level services (ESP and AH).

Protocols and phases

Three protocols may be used in an IPsec implementation:

  • ESP, Encapsulating Security Payload, encrypts and/or authenticates data
  • AH, Authentication Header, provides a packet authentication service. No longer widely used,
  • IKE, Internet Key Exchange, negotiates connection parameters, including keys, for the other two using a Diffie-Hellman tecnique

The term "IPsec" (also written as IPSEC) is slightly ambiguous. In some contexts, it includes all three of the above but in other contexts it refers only to AH and ESP.

There is more detail below, but a quick summary of how the whole thing works is:

  • Phase one IKE (main mode exchange) — sets up a keying channel, called an ISAKMP Security Association (SA), between the two gateways
  • Phase two IKE (quick mode exchange) — sets up data channels (IPsec SAs)
  • IPsec proper — exchanges data using AH and/or ESP

Both phases of IKE are repeated periodically to automate re-keying.

The role of IPsec

Authentication and encryption functions for network data can, of course, be provided at other levels. Many security protocols work at levels above IP.

   * PGP encrypts and authenticates mail messages
   * SSH authenticates remote logins and then encrypts the session
   * SSL or TLS provides security at the sockets layer, e.g. for secure web browsing

and so on. Other techniques work at levels below IP. For example, data on a communications circuit or an entire network can be encrypted by specialised hardware. This is common practice in high-security applications.

There are, however, advantages to doing it at the IP level instead of, or as well as, at other levels.

IPsec is the most general way to provide these services for the Internet. Higher-level services protect a single protocol; for example PGP protects mail. Lower level services protect a single medium; for example a pair of encryption boxes on the ends of a line make wiretaps on that line useless unless the attacker is capable of breaking the encryption. IPsec can protect any protocol running above IP and any medium which IP runs over. More to the point, it can protect a mixture of application protocols running over a complex combination of media. This is the normal situation for Internet communication; IPsec is the only general solution.

IPsec can also provide some security services "in the background", with no visible impact on users. To use PGP encryption and signatures on mail, for example, the user must at least remember his or her passphrase, keep the passphrase secure, and follow procedures to validate correspondents' keys. These systems can be designed so that the burden on users is not onerous, but any system will place some requirements on users. No such system can hope to be secure if users are sloppy about meeting those requirements. The author has seen username and password stuck on terminals with post-it notes in an allegedly secure environment, for example.

Limitations of IPsec

IPsec is designed to secure IP links between machines. It does that well, but it is important to remember that there are many things it does not do. Some of the important limitations are:

IPsec cannot be secure if your system isn't. System security on IPsec gateway machines is an essential requirement if IPsec is to function as designed. No system can be trusted if the underlying machine has been subverted.

Of course, there is another side to this. IPsec can be a powerful tool for improving system and network security. For example, requiring packet authentication makes various spoofing attacks harder and IPsec tunnels can be extremely useful for secure remote administration of various things.

IPsec is not end-to-end: IPsec cannot provide the same end-to-end security as systems working at higher levels. IPsec encrypts an IP connection between two machines, which is quite a different thing than encrypting messages between users or between applications.

For example, if you need mail encrypted from the sender's desktop to the recipient's desktop and decryptable only by the recipient, use PGP or another such system. IPsec can encrypt any or all of the links involved -- between the two mail servers, or between either server and its clients. It could even be used to secure a direct IP link from the sender's desktop machine to the recipient's, cutting out any sort of network snoop. What it cannot ensure is end-to-end user-to-user security. If only IPsec is used to secure mail, then anyone with appropriate privileges on any machine where that mail is stored (at either end or on any store-and-forward servers in the path) can read it.

In another common setup, IPsec encrypts packets at a security gateway machine as they leave the sender's site and decrypts them on arrival at the gateway to the recipient's site. This does provide a useful security service -- only encrypted data is passed over the Internet -- but it does not even come close to providing an end-to-end service. In particular, anyone with appropriate privileges on either site's LAN can intercept the message in unencrypted form.

IPsec also cannot provide all the functions of systems working at higher levels. If you need a document electronically signed by a particular person, then you need his or her digital signature and a public key cryptosystem to verify it with.

Note, however, that IPsec authentication of the underlying communication can make various attacks on higher-level protocols more difficult. In particular, authentication prevents man-in-the-middle attacks.

IPsec authenticates machines, not users. IPsec uses strong authentication mechanisms to control which messages go to which machines, but it does not have the concept of user ID, which is vital to many other security mechansims and policies. This means some care must be taken in fitting the various security mechansims on a network together. For example, if you need to control which users access your database server, you need some non-IPsec mechansim for that. IPsec can control which machines connect to the server, and can ensure that data transfer to those machines is done securely, but that is all. Either the client machines must all have strong controls on user access or there must be some form of user authentication to the database, independent of IPsec; in many cases you may need both.

IPsec does not stop denial of service attacks. Denial of service attacks aim at causing a system to crash, overload, or become confused so that legitimate users cannot get whatever services the system is supposed to provide. These are quite different from attacks in which the attacker seeks either to use the service himself or to subvert the service into delivering incorrect results. IPsec shifts the ground for DoS attacks; the attacks possible against systems using IPsec are different than those that might be used against other systems. It does not, however, eliminate the possibility of such attacks.

IPsec does not stop traffic analysis Traffic analysis is the attempt to derive intelligence from messages without regard for their contents. In the case of IPsec, it would mean analysis based on things visible in the unencrypted headers of encrypted packets -- source and destination gateway addresses, packet size, et cetera. Given the resources to acquire such data and some skill in analysing it (both of which any national intelligence agency should have), this can be a very powerful technique.

IPsec is not designed to defend against this. Partial defenses are certainly possible, but it is not clear that any complete defense can be provided.

IPsec is a general mechanism for securing IP

While IPsec does not provide all the functions, or all the security, of a mail encryption package, it can encrypt your mail. In particular, it can ensure that all mail passing between a pair or a group of sites is encrypted. An attacker looking only at external traffic, without access to anything on or behind the IPsec gateway, cannot read your mail. He or she is stymied by IPsec just as he or she would be by PGP.

The advantage is that IPsec can provide the same protection for anything transmitted over IP. In a corporate network example, PGP lets the branch offices exchange secure mail with head office. SSL and SSH allow them to securely view web pages, connect as terminals to machines, and so on. IPsec can support all those applications, plus database queries, file sharing (NFS or Windows), other protocols encapsulated in IP (Netware, Appletalk, ...), phone-over-IP, video-over-IP, ... anything-over-IP. The only limitation is that IP Multicast is not yet supported, though there are Internet Draft documents for that.

IPsec creates secure tunnels through untrusted networks . Sites connected by these tunnels form VPNs, Virtual private networks.

IPsec gateways can be installed wherever they are required. One organisation might choose to install IPsec only on firewalls between their LANs and the Internet; this would allow them to create a VPN linking several offices and would provide protection against anyone outside their sites. Another might install IPsec on departmental servers so everything on the corporate backbone net was encrypted; this would protect messages on that net from everyone except the sending and receiving department. Another organisation might be less concerned with information secrecy and more with controlling access to certain resources; they might use IPsec packet authentication as part of an access control mechanism, with or without also using the IPsec encryption service. It is even possible (assuming adequate processing power and an IPsec implementation in each node) to make every machine its own IPsec gateway so that everything on a LAN is encrypted; this protects information from everyone outside the sending and receiving machine.

These techniques can be combined in various ways. One might, for example, require authentication everywhere on a network while using encryption only for a few links. Which of these, or of the many other possible variants, to use is up to you. IPsec provides mechanisms; you provide the policy.

IPsec usage

IPsec can be, and often should be, used with along with security protocols at other levels. If two sites communicate with each other via the Internet, then IPsec is the obvious way to protect that communication. If two others have a direct link between them, either link encryption or IPsec would make sense. Choose one or use both. Whatever you use at and below the IP level, use other things as required above that level. Whatever you use above the IP level, consider what can be done with IPsec to make attacks on the higher levels harder. For example, man-in-the-middle attacks on various protocols become difficult if authentication at packet level is in use on the potential victims' communication channel.

Normal use: ESP encryption + authentication

Today, typical usage is ESP for encryption and authentication.

Authentication without encryption

IPsec can provide authentication without encryption, via an AH-only connection or ESP using null encryption.

Encryption without authentication is dangerous

Originally, the IPsec encryption protocol ESP didn't do integrity checking. It only did encryption. Steve Bellovin found many ways to attack ESP used without authentication. See his paper "Problem areas for the IP Security Protocols" [1]. To make a secure connection, you had to add an AH Authentication Header as well as ESP. Rather than incur the overhead of several layers (and rather than provide an ESP layer that didn't actually protect the traffic), the IPsec working group built integrity and replay checking directly into ESP.

Other combinations

Other variants are allowed by the standard, but not much used:

  • ESP encryption without authentication: Bellovin has demonstrated fatal flaws in this. Do not use.
  • ESP encryption with AH authentication: This has higher overheads than using the authentication in ESP, and no obvious benefit in most cases. The exception might be a network where AH authentication was widely or universally used. If you're going to do AH to conform with network policy, why authenticate again in the ESP layer?
  • Authenticate twice, with AH and with ESP: Why? Of course, some folk consider "belt and suspenders" the sensible approach to security. If you're among them, you might use both protocols here. You might also use both to satisfy different parts of a security policy. For example, an organisation might require AH authentication everywhere but two users within the organisation might use ESP as well.
  • ESP authentication without encryption The standard allows this, calling it "null encryption". Not all implementations support it.
  • AH for authentication alone: AH authenticates parts of the IP header, which ESP-null does not do.

There have been suggestions that AH be dropped entirely from the IPsec specifications since ESP and null encryption can handle that situation. It is not clear whether this will occur.